Large-Scale and Predictable Organization of Nanocrystal Homo- and Heterojunctions through Polymer-Directed Processing

通过聚合物定向加工大规模且可预测地组织纳米晶体同质和异质结

基本信息

  • 批准号:
    1200850
  • 负责人:
  • 金额:
    $ 45.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

The research objective of this project is the scalable fabrication of plasmonic nanojunctions, the nanometer-sized gaps created between high-curvature metal surfaces that produce intense electromagnetic ?hot spots.? In this project, metal nanocrystals will be self-organized to form precise nanojunctions by carrying out phase segregation within a nanocrystal-polymer composite. Nanocrystals will be assembled with respect to shape and orientation to create homojunction (similar) and heterojunction (dissimilar) nanocrystal pairs. Molecular simulations will be used to deduce the global phase diagram of the multicomponent nanocrystal-polymer mixtures and to predict the mechanisms and kinetics of large-scale nanocrystal assembly. Guided by simulations, nanocrystals will be chemically modified by polymer grafts with tailored chain lengths, grafting density, and charge. Detailed morphology studies of the resulting nanocomposite will provide insight into how the chemical nature of the nanocrystal surface can be used to tune the key intermolecular interactions that regulate orientation and arrangement of the plasmonic nanojunctions.The results of this project will facilitate the successful fabrication of large-area, non-close-packed plasmonic nanocrystals arrays that are currently inaccessible by top-down fabrication methods. These nanomaterials will be designed for integration into optical device platforms for applications such as subwavelength focusing, surface-enhanced Raman spectroscopy, and electromagnetic transparency. This work will also provide a fundamental understanding of the general mechanisms governing polymer-directed nanocrystal assembly. By establishing a close collaboration between experiment and theory, this work has the potential for the discovery of novel self-assembly pathways and mechanisms for achieving new and complex nanomaterials architectures. In addition, this research project will contribute to the education of pre-college, undergraduate, and graduate students in the field of nanoengineering. This includes the design of new laboratory modules and research-based coursework for undergraduates as well as outreach activities that will increase the overall diversity of the undergraduate engineering population at UCSD.
该项目的研究目标是等离子体纳米结的可扩展制造,纳米尺寸的间隙之间的高曲率金属表面,产生强烈的电磁?热点?在这个项目中,金属纳米晶体将通过在纳米晶体-聚合物复合材料中进行相分离而自组织形成精确的纳米结。纳米晶体将根据形状和取向组装,以产生同质结(相似)和异质结(不相似)的异质结对。分子模拟将用于推导多组分纳米晶-聚合物混合物的全局相图,并预测大规模纳米晶组装的机理和动力学。在模拟的指导下,纳米晶体将通过具有定制链长、接枝密度和电荷的聚合物接枝物进行化学修饰。对所得纳米复合材料的详细形态学研究将深入了解如何利用表面的化学性质来调节调节等离子体纳米结的取向和排列的关键分子间相互作用,该项目的结果将有助于成功制造大面积,非紧密堆积的等离子体纳米晶体阵列,这些阵列目前无法通过自上而下的制造方法获得。这些纳米材料将被设计成集成到光学设备平台的应用,如亚波长聚焦,表面增强拉曼光谱,和电磁透明。这项工作也将提供一个基本的了解,一般机制,管理聚合物导向的聚合物组装。通过建立实验和理论之间的密切合作,这项工作有可能发现新的自组装途径和机制,以实现新的和复杂的纳米材料结构。此外,该研究项目将有助于大学预科,本科和研究生在纳米工程领域的教育。这包括为本科生设计新的实验室模块和基于研究的课程,以及将增加UCSD本科工程人口整体多样性的外联活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Tao其他文献

NanoNERF: A nanoscale NERF blaster replica made of DNA
NanoNERF:由 DNA 制成的纳米级 NERF 冲击波复制品
  • DOI:
    10.1101/2023.10.02.560388
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lauren Takiguchi;Mark B. Rober;Jocelyn G. Olvera;Amanda L. Wacker;Ryan J. Fantasia;Boyu Liu;Wade E. Shipley;Andrea Tao;Pallav Kosuri
  • 通讯作者:
    Pallav Kosuri

Andrea Tao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Tao', 18)}}的其他基金

RAPID COVID-19: Metasurface Enhanced Raman Spectroscopy Platform for High-Sensitivity, Multiplexed Detection of Antibodies and RNA for Point-of-Care Diagnostics
RAPID COVID-19:超表面增强拉曼光谱平台,用于抗体和 RNA 的高灵敏度多重检测,用于即时诊断
  • 批准号:
    2032196
  • 财政年份:
    2020
  • 资助金额:
    $ 45.48万
  • 项目类别:
    Standard Grant
Plasmon-Enhanced Scanning Probe Spectroscopy for Chemical Mapping of Nanoscale Interfaces
用于纳米级界面化学测绘的等离子体激元增强扫描探针光谱
  • 批准号:
    1807891
  • 财政年份:
    2018
  • 资助金额:
    $ 45.48万
  • 项目类别:
    Standard Grant
Manufacturing Heterogeneous Composite Nanostructures by Layer-by-Layer Deposition and Self-Assembly
通过层层沉积和自组装制造异质复合纳米结构
  • 批准号:
    1636356
  • 财政年份:
    2016
  • 资助金额:
    $ 45.48万
  • 项目类别:
    Standard Grant
Metal-Organic Liquid Crystals as Single-Source Precursors for Semiconductor Nanocrystals
金属有机液晶作为半导体纳米晶体的单一来源前体
  • 批准号:
    1508755
  • 财政年份:
    2015
  • 资助金额:
    $ 45.48万
  • 项目类别:
    Standard Grant
NUE: Development of a Computational Curriculum for Undergraduates in NanoTechnology and NanoEngineering (NanoCompute)
NUE:为纳米技术和纳米工程本科生开发计算课程(NanoCompute)
  • 批准号:
    1446106
  • 财政年份:
    2014
  • 资助金额:
    $ 45.48万
  • 项目类别:
    Standard Grant
BRIGE: Nanocrystal Probes for Tip-Enhanced Raman Spectroscopy
BRIGE:用于尖端增强拉曼光谱的纳米晶体探针
  • 批准号:
    1125789
  • 财政年份:
    2011
  • 资助金额:
    $ 45.48万
  • 项目类别:
    Standard Grant

相似国自然基金

基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
  • 批准号:
    22108101
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
  • 批准号:
    31600794
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
针对Scale-Free网络的紧凑路由研究
  • 批准号:
    60673168
  • 批准年份:
    2006
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 45.48万
  • 项目类别:
    Fellowship
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
  • 批准号:
    2337399
  • 财政年份:
    2024
  • 资助金额:
    $ 45.48万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 45.48万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346565
  • 财政年份:
    2024
  • 资助金额:
    $ 45.48万
  • 项目类别:
    Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 45.48万
  • 项目类别:
    Standard Grant
Investigating Multi-Scale Dynamical Processes Amplifying Storm Surges
研究放大​​风暴潮的多尺度动力学过程
  • 批准号:
    2342516
  • 财政年份:
    2024
  • 资助金额:
    $ 45.48万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346564
  • 财政年份:
    2024
  • 资助金额:
    $ 45.48万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 45.48万
  • 项目类别:
    Standard Grant
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
  • 批准号:
    2422696
  • 财政年份:
    2024
  • 资助金额:
    $ 45.48万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
  • 批准号:
    2307253
  • 财政年份:
    2024
  • 资助金额:
    $ 45.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了