EFRI-HyBi: Fungal Processes for Direct Bioconversion of Cellulose to Hydrocarbons

EFRI-HyBi:纤维素直接生物转化为碳氢化合物的真菌过程

基本信息

  • 批准号:
    0937613
  • 负责人:
  • 金额:
    $ 199.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

Abstract PI Name: Brent Peyton Institution: Montana State UniversityProposal Number: 0937613EFRI: EFRI-HyBi: Fungal Processes for Direct Bioconversion ofCellulose to HydrocarbonsThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)An interdisciplinary team from Bio/Chemical Engineering, Mechanical Engineering, Biochemistry, and Plant Science at Montana State University (MSU) and Yale University will focus on a recently emerging biotechnology for direct production of hydrocarbons (chemically equivalent to petroleum) from waste cellulose feedstock. Gliocladium roseum (NRRL 50072) is an endophytic fungus recently isolated from Northern Patagonia by Gary Strobel (MSU). G. roseum produces and excretes "mycodiesel", an extensive series of straight chained and branched medium chain-length hydrocarbons, including heptane, octane, undecane, dodecane and hexadecane. This organism has the potential to produce petroleum directly using a cellulose fermentation process that is essentially carbon neutral. Peyton (MSU) and G. Strobel will oversee the characterization and optimization of G. roseum to obtain quantitative bioprocessing parameters to maximize diesel-range hydrocarbon production. This will also provide a baseline for calibration of metabolic flux analysis models and comparison for efforts focused on improving hydrocarbon production rates and yields. Yale's Scott Strobel will focus on annotating the existing G. roseum genome to support the development of the metabolic flux analysis model which will in turn guide experiments to maximize hydrocarbon yields and production rates. Ross Carlson (MSU) will develop these numerical metabolic flux models to allow in silico predictions of effects of culturing conditions on cell yields and hydrocarbon production. Mitchell Smooke (Yale) will provide detailed evaluations of the fuel/burning characteristics of component hydrocarbons produced in the mycodiesel mixture. Intellectual Merit: The proposed research challenges the current prototype for fuel production from waste cellulose. In contrast to ethanol systems, by potentially eliminating separate saccharification processing, this proposed fungal technology can bypass one of the most costly and energy intensive steps of waste cellulose conversion. Further, while much national effort has focused on ethanol production, beyond characterization of cellulolytic fungal enzymes, very little research has examined the potential role of fungi in renewable fuel production. This interdisciplinary team will utilize state of the art molecular, bioengineering, metabolic modeling, and fuel analysis techniques to characterize and optimize G. roseum for direct cellulose to fuel conversion processes and to enhance fuel hydrocarbon yield. Overall, through direct conversion of cellulose to petroleum, the proposed research will significantly change the paradigm for production of renewable fuels and has the long term potential to yield a large variety of renewable chemicals. Broader Impacts: Only 15% of current fuel needs could be met if all U.S corn was converted to ethanol. Obviously, alternatives to corn are needed. In Montana alone, the estimated the annual supply of forest residues is 1,317,000 dry tons per year (USDA and USDOE, 2005) and it was estimated the U.S. could sustainably produce 368 million dry tons of forest biomass. Clearly, a novel technology that could directly convert waste biomass into fuel grade hydrocarbons would be a significant paradigm shift in current renewable fuel strategies. The PIs propose an integration of microbiology, molecular biology, metabolic modeling, and bio/chemical engineering that will educate, develop, and exchange students from both Montana State University and Yale University. The team will make presentations at the public science lecture series in Bozeman, participate in the "Scientist for a Day" program targeting rural community kids, contribute to the "Frontiers of Science" program designed to expose high school juniors and seniors to leading edge scientific research at Yale, and will present guest lectures on both campuses on Energy and Sustainability. Funding is also included in the proposal to integrate Native American undergraduate students into the project through MSU's American Indian Research Opportunities (AIRO) and Montana's Tribal Colleges. MSU has a long-term history of supporting American Indian students in research positions, and this has been a successful program for improving Native American B.S. degrees at MSU. This project would open many new doors to an important and relatively unexplored alternative to meeting our renewable fuels needs.
摘要PI名称:布伦特佩顿机构:蒙大拿州立大学提案编号:0937613 EFRI:EFRI-HyBi:纤维素直接生物转化为碳氢化合物的真菌过程该奖项由2009年美国复苏和再投资法案资助(公法111-5)来自生物/化学工程,机械工程,生物化学,蒙大拿州州立大学和耶鲁大学的生物和植物科学研究所将集中研究一种最近出现的从废弃纤维素原料中直接生产碳氢化合物(化学上相当于石油)的生物技术。粉红粘帚霉(Gliocladium roseum,NRRL 50072)是加里·斯特罗贝尔(MSU)等从北方巴塔哥尼亚分离到的一种内生真菌。G.蔷薇属产生并分泌“真菌柴油”,一系列广泛的直链和支链中链长度烃,包括庚烷、辛烷、十一烷、十二烷和十六烷。这种生物有可能直接使用基本上是碳中性的纤维素发酵过程生产石油。佩顿(MSU)和G. Strobel将监督G. roseum获得定量的生物处理参数,以最大限度地提高柴油范围的碳氢化合物产量。这还将为代谢通量分析模型的校准和重点提高碳氢化合物生产率和产量的努力的比较提供基线。耶鲁大学的斯科特·斯特罗贝尔将专注于注释现有的G。roseum基因组,以支持代谢通量分析模型的发展,这将反过来指导实验,以最大限度地提高碳氢化合物产量和生产率。Ross Carlson(MSU)将开发这些数值代谢通量模型,以通过计算机模拟预测培养条件对细胞产量和碳氢化合物产量的影响。Mitchell Smooke(耶鲁大学)将对真菌柴油混合物中产生的组分碳氢化合物的燃料/燃烧特性进行详细评估。知识价值:拟议的研究挑战了目前从废弃纤维素生产燃料的原型。与乙醇系统相比,通过潜在地消除单独的糖化处理,这种提出的真菌技术可以绕过废物纤维素转化中最昂贵和能源密集的步骤之一。此外,虽然许多国家的努力都集中在乙醇生产上,除了纤维素分解真菌酶的表征,很少有研究考察真菌在可再生燃料生产中的潜在作用。这个跨学科的团队将利用最先进的分子,生物工程,代谢建模和燃料分析技术来表征和优化G。roseum用于直接纤维素到燃料转化过程和提高燃料烃产率。总的来说,通过将纤维素直接转化为石油,拟议的研究将显著改变可再生燃料生产的范式,并具有生产各种可再生化学品的长期潜力。更广泛的影响:如果美国所有的玉米都转化为乙醇,目前只有15%的燃料需求可以得到满足。显然,需要玉米的替代品。仅在蒙大拿州,估计每年森林残留物的供应量为1,317,000干吨(美国农业部和美国能源部,2005年),据估计,美国可持续生产3.68亿干吨森林生物质。显然,一种可以将废弃生物质直接转化为燃料级碳氢化合物的新技术将是当前可再生燃料战略的重大范式转变。PI提出了微生物学,分子生物学,代谢建模和生物/化学工程的整合,将教育,发展和交换来自蒙大拿州立大学和耶鲁大学的学生。该团队将在博兹曼的公共科学讲座系列中发表演讲,参加针对农村社区儿童的“科学家一天”计划,为旨在让高中三年级和四年级学生接触耶鲁大学前沿科学研究的“科学前沿”计划做出贡献,并将在能源和可持续发展的两个校园中发表客座演讲。资金也包括在提案中,通过密歇根州立大学的美国印第安人研究机会(AIRO)和蒙大拿州的部落学院将美洲原住民本科生纳入该项目。密歇根州立大学有支持美国印第安学生在研究职位的长期历史,这一直是一个成功的计划,以提高美国本土的学士学位。MSU的学位。该项目将为满足我们可再生燃料需求的重要且相对未开发的替代品打开许多新的大门。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brent Peyton其他文献

Brent Peyton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brent Peyton', 18)}}的其他基金

REU Site: Exploring the Limits of Life - Understanding Biofilms in Extreme Environments
REU 网站:探索生命的极限 - 了解极端环境中的生物膜
  • 批准号:
    2349256
  • 财政年份:
    2024
  • 资助金额:
    $ 199.88万
  • 项目类别:
    Standard Grant
REU Site: Exploring the Limits of Life - Understanding Biofilms in Extreme Environments
REU 网站:探索生命的极限 - 了解极端环境中的生物膜
  • 批准号:
    2050856
  • 财政年份:
    2021
  • 资助金额:
    $ 199.88万
  • 项目类别:
    Standard Grant
NRT-URoL: Decoding the Mechanisms Underpinning Biofilm Function and Architecture in Extreme Environments
NRT-URoL:解码极端环境中生物膜功能和结构的基础机制
  • 批准号:
    2125748
  • 财政年份:
    2021
  • 资助金额:
    $ 199.88万
  • 项目类别:
    Standard Grant
Biogeochemical Cycling of Heavy Metals in Lake Coeur d'Alene Sediments: The Role of Indigenous Microbial Communities
科达伦湖沉积物中重金属的生物地球化学循环:本土微生物群落的作用
  • 批准号:
    0628258
  • 财政年份:
    2006
  • 资助金额:
    $ 199.88万
  • 项目类别:
    Standard Grant
Biogeochemical Cycling of Heavy Metals in Lake Coeur d'Alene Sediments: The Role of Indigenous Microbial Communities
科达伦湖沉积物中重金属的生物地球化学循环:本土微生物群落的作用
  • 批准号:
    0420374
  • 财政年份:
    2004
  • 资助金额:
    $ 199.88万
  • 项目类别:
    Standard Grant

相似海外基金

EFRI-HyBi: Lignin Deconstruction for the Production of Liquid Fuels
EFRI-HyBi:用于生产液体燃料的木质素解构
  • 批准号:
    0937657
  • 财政年份:
    2009
  • 资助金额:
    $ 199.88万
  • 项目类别:
    Standard Grant
EFRI-HyBi: Conversion of Biomass to Fuels using Molecular Sieve Catalysts and Millisecond Contact Time Reactors
EFRI-HyBi:使用分子筛催化剂和毫秒接触时间反应器将生物质转化为燃料
  • 批准号:
    0937706
  • 财政年份:
    2009
  • 资助金额:
    $ 199.88万
  • 项目类别:
    Standard Grant
EFRI HyBi: Algal Oils to 'Drop-in' Replacements for Petroleum-derived Transportation Fuels
EFRI HyBi:藻油可“直接”替代石油衍生运输燃料
  • 批准号:
    0937721
  • 财政年份:
    2009
  • 资助金额:
    $ 199.88万
  • 项目类别:
    Standard Grant
EFRI-HyBi Green Aromatics by Catalytic Fast Pyrolysis of Lignocellulosic Biomass
通过木质纤维素生物质催化快速热解制备 EFRI-HyBi 绿色芳烃
  • 批准号:
    0937895
  • 财政年份:
    2009
  • 资助金额:
    $ 199.88万
  • 项目类别:
    Standard Grant
EFRI-HyBi: The Science and Engineering of Microalgae Hydrothermal Processing
EFRI-HyBi:微藻水热处理的科学与工程
  • 批准号:
    0937992
  • 财政年份:
    2009
  • 资助金额:
    $ 199.88万
  • 项目类别:
    Standard Grant
EFRI-HyBi: Maximizing Conversion of Biomass Carbon to Liquid Fuel
EFRI-HyBi:最大限度地将生物质碳转化为液体燃料
  • 批准号:
    0938033
  • 财政年份:
    2009
  • 资助金额:
    $ 199.88万
  • 项目类别:
    Standard Grant
EFRI-HyBi: Bioengineering a System for the Direct Production of Biological Hydrocarbons for Biofuels
EFRI-HyBi:生物工程直接生产生物燃料生物碳氢化合物的系统
  • 批准号:
    0938157
  • 财政年份:
    2009
  • 资助金额:
    $ 199.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了