A Multivariable Calculus Manual to Accompany 3D Manipulatives
配合 3D 操作的多变量微积分手册
基本信息
- 批准号:0941877
- 负责人:
- 金额:$ 6.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematical Sciences (21): This project, in two phases, is producing and testing an inexpensive kit, along with accompanying materials for its use, which allows students to effectively visualize points, vectors, lines, planes, and surfaces in 3-D. Many students currently visualize only 2D topics in their natural dimension and then must generalize to n dimensions. Mathematical software packages such as Mathematica, Maple, MathCAD, and Matlab have provided enormous aid to students and professors wishing to visualize concepts in three dimensions. However, there are many concepts where the two dimensional nature of a computer screen can limit the effectiveness of these packages, particularly if students have a weak geometrical background. For example, directional derivatives require the tangent line to a surface in a given direction associated with the xy plane. In three dimensions, a surface can be placed over the xy plane, the direction on the xy plane can be indicated, and the concept can be visualized quite easily. However, visualizing a precise direction and its associated tangent line on a 2D computer screen is often difficult for students. Correspondingly, a more effective pedagogical approach for this and many other concepts is to use physical 3D manipulatives. These allow visualization and motivation of concepts in a real three dimensional space. Manipulatives often prove more effective than a projection of three dimensions onto a two dimensional computer screen, particularly when students are first being introduced to multivariable functions. With this kit, students can visualize both 2D and 3D topics in their natural dimension before generalizing to n dimensions. The initial phase of this project has produced the basic set of manipulatives and they have been successfully tested. This new phase of the project is producing the materials which allows both students and teachers to use the manipulatives effectively.
数学科学(21):这个项目分两个阶段,生产和测试一个便宜的工具包,沿着材料,使学生能够有效地可视化点,矢量,线,平面和表面的三维。目前,许多学生只在自然维度中可视化2D主题,然后必须推广到n维。数学软件包,如Mathematica,Maple,MathCAD和Matlab为希望在三维空间中可视化概念的学生和教授提供了巨大的帮助。然而,有许多概念,其中计算机屏幕的二维性质可以限制这些软件包的有效性,特别是如果学生有一个薄弱的几何背景。例如,方向导数要求在与xy平面相关联的给定方向上的曲面的切线。在三维空间中,一个表面可以放在xy平面上,xy平面上的方向可以指示,概念可以很容易地可视化。然而,在2D计算机屏幕上可视化精确的方向及其相关的切线对于学生来说通常是困难的。相应地,对于这个概念和许多其他概念,一个更有效的教学方法是使用物理3D操作。这些允许在真实的三维空间中的概念的可视化和激励。操纵往往证明更有效的三维投影到一个二维的计算机屏幕上,特别是当学生第一次被介绍给多变量函数。有了这个工具包,学生可以在推广到n维之前,在自然维度上可视化2D和3D主题。该项目的初始阶段已经产生了一套基本的操纵器,并已成功测试。这个项目的新阶段是制作材料,让学生和教师有效地使用操作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel McGee其他文献
Trends of coronary heart disease among men of Japanese ancestry in Hawaii
- DOI:
10.1007/bf01666450 - 发表时间:
1983-03-01 - 期刊:
- 影响因子:2.200
- 作者:
Dwayne Reed;Daniel McGee;Katsuhiko Yano - 通讯作者:
Katsuhiko Yano
Students’ understanding of the relation between tangent plane and directional derivatives of functions of two variables
- DOI:
10.1016/j.jmathb.2017.02.001 - 发表时间:
2017-06-01 - 期刊:
- 影响因子:
- 作者:
Rafael Martínez-Planell;María Trigueros Gaismán;Daniel McGee - 通讯作者:
Daniel McGee
Identifying Obstructive Sleep Apnea in Patients Presenting for Laser‐Assisted Uvulopalatoplasty
识别接受激光辅助悬雍垂腭成形术的患者的阻塞性睡眠呼吸暂停
- DOI:
10.1097/00005537-199604000-00008 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Abhay M. Vaidya;G. Petruzzelli;R. P. Walker;Daniel McGee;C. Gopalsami - 通讯作者:
C. Gopalsami
Daniel McGee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel McGee', 18)}}的其他基金
Collaborative Research: TECHNO: TECHnology-Centered Mathematical NOticing
合作研究:TECHNO:以技术为中心的数学注意
- 批准号:
1431098 - 财政年份:2014
- 资助金额:
$ 6.67万 - 项目类别:
Standard Grant
Full Development of Visualization Tools for 3D
3D可视化工具全面开发
- 批准号:
0442365 - 财政年份:2005
- 资助金额:
$ 6.67万 - 项目类别:
Standard Grant
Visualization Tools for Three Dimensions
三维可视化工具
- 批准号:
9952567 - 财政年份:2000
- 资助金额:
$ 6.67万 - 项目类别:
Standard Grant
Reforming Calculus Instruction in Puerto Rico
改革波多黎各的微积分教学
- 批准号:
9450758 - 财政年份:1994
- 资助金额:
$ 6.67万 - 项目类别:
Standard Grant
相似海外基金
Building a Calculus Active Learning Environment Equally Beneficial Across a Diverse Student Population
建立一个对不同学生群体同样有益的微积分主动学习环境
- 批准号:
2315747 - 财政年份:2024
- 资助金额:
$ 6.67万 - 项目类别:
Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345437 - 财政年份:2024
- 资助金额:
$ 6.67万 - 项目类别:
Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345438 - 财政年份:2024
- 资助金额:
$ 6.67万 - 项目类别:
Standard Grant
Equivariant Schubert calculus for p-compact groups
p-紧群的等变舒伯特微积分
- 批准号:
23K03092 - 财政年份:2023
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Accessible Calculus Project: Advancing Equity by Democratizing Access to Advanced Mathematics
无障碍微积分项目:通过民主化高级数学的普及来促进公平
- 批准号:
2315197 - 财政年份:2023
- 资助金额:
$ 6.67万 - 项目类别:
Standard Grant
Conference: International conference on Malliavin calculus and related topics
会议:Malliavin 微积分及相关主题国际会议
- 批准号:
2308890 - 财政年份:2023
- 资助金额:
$ 6.67万 - 项目类别:
Standard Grant
Lp-Approximation Properties, Multipliers, and Quantized Calculus
Lp 近似属性、乘子和量化微积分
- 批准号:
2247123 - 财政年份:2023
- 资助金额:
$ 6.67万 - 项目类别:
Standard Grant
Asymptotic theory and infinite-dimensional stochastic calculus
渐近理论和无限维随机微积分
- 批准号:
23H03354 - 财政年份:2023
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Accessible Calculus Project: Advancing Equity by Democratizing Access to Advanced Mathematics
无障碍微积分项目:通过民主化高级数学的普及来促进公平
- 批准号:
2315199 - 财政年份:2023
- 资助金额:
$ 6.67万 - 项目类别:
Continuing Grant
Predictable Variations in Stochastic Calculus
随机微积分的可预测变化
- 批准号:
EP/Y024524/1 - 财政年份:2023
- 资助金额:
$ 6.67万 - 项目类别:
Research Grant