Summer Workshop on Homotopy Theory; Cambridge, MA

同伦理论夏季研讨会;

基本信息

  • 批准号:
    0943108
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

The collaborative NSF project "Homotopy Theory: Applications and New Dimensions" supports research by a group of topologists based in Cambridge, Massachusetts. The present grant aims to enhance and leverage the resulting concentration of creativity and expertise by gathering a fairly small group of specialists working in closely allied fields, during the summer, and conducting an open weekly (or more frequent) seminar in order to disseminate this work and engage others in the Boston area including especially graduate students. The focus for the summer of 2009 is the recent solution of the Kervaire invariant problem by Michael Hopkins, Mike Hill, and Douglas Ravenel. The resolution of this problem, which arose in the early days of geometric topology, had to wait for some half century for the development of sufficiently powerful homotopy theoretic tools. The new solution brings into play methods from essentially the whole range of contemporary stable homotopy theory -- chromatic, equivariant, and motivic.The classification of closed surfaces - the sphere, the torus, and so on - was accomplished in the nineteenth century. In the 1960's, a strategy was described for classifying n-manifolds, the n-dimensional analogues of closed surfaces. This project, known as "surgery," was essentially completed almost 50 years ago, with one annoying point left over.This remaining question involved a subtle quantity known as the Kervaire invariant, and the methods of the day were not adequate to determine its value. Fifty years of development of algebraic topology has now finally led to a resolution of this question. The present grant aims to bring together experts involved in this work, to explore its ramifications and disseminate the result in a seminar which will present the background and significance of the Kervaire invariant problem and then systematically develop the techniques needed for its resolution.
美国国家科学基金会的合作项目“同伦理论:应用和新维度”支持马萨诸塞州剑桥的一组拓扑学家的研究。本补助金旨在提高和利用由此产生的创造力和专业知识的集中,通过收集一个相当小的专家组在密切相关的领域工作,在夏季,并进行每周一次的公开(或更频繁)研讨会,以传播这项工作,并吸引其他人在波士顿地区,特别是研究生。2009年夏天的焦点是迈克尔霍普金斯,迈克希尔和道格拉斯拉文埃尔最近解决的Kervaire不变量问题。这个问题的解决,出现在早期的几何拓扑,不得不等待一些半世纪的发展足够强大的同伦理论工具。新的解决方案使当代稳定同伦理论的所有方法都发挥了作用--色性、等变和动机。封闭曲面的分类--球面、环面等--在世纪完成。在20世纪60年代,描述了一种用于分类n-流形的策略,n-流形是封闭曲面的n维类似物。这个被称为“手术”的项目在近50年前基本完成,只剩下一个恼人的问题,这个问题涉及一个被称为Kervaire不变量的微妙数量,当时的方法不足以确定它的值。50年的发展代数拓扑现在终于导致解决这个问题。目前的赠款旨在汇集参与这项工作的专家,探讨其影响,并在研讨会上传播结果,该研讨会将介绍Kervaire不变问题的背景和意义,然后系统地开发解决问题所需的技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haynes Miller其他文献

Haynes Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haynes Miller', 18)}}的其他基金

Conference: Young Topologists Meeting 2022
会议:2022 年青年拓扑学家会议
  • 批准号:
    2222375
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
2020 - 2022 Talbot Workshops on Mathematics Centering on Algebraic Topology
2020 - 2022年以代数拓扑为中心的塔尔伯特数学研讨会
  • 批准号:
    1953947
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Classical Methods in Motivic Homotopy Theory
动机同伦理论中的经典方法
  • 批准号:
    1906072
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
2017-2019 Talbot Workshops
2017-2019 塔尔博特研讨会
  • 批准号:
    1623977
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
2014-2016 Talbot Workshops
2014-2016 塔尔博特研讨会
  • 批准号:
    1406356
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The Legacy of Daniel Quillen: K-Theory And Homotopical Algebra
Daniel Quillen 的遗产:K 理论和同伦代数
  • 批准号:
    1206449
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Talbot Workshops 2011 - 2013
塔尔博特研讨会 2011 - 2013
  • 批准号:
    1007096
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematics Communication Space: Resource for Educators
数学交流空间:教育工作者资源
  • 批准号:
    1043632
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Homotopy Theory: Applications and New Dimensions
合作研究:同伦理论:应用和新维度
  • 批准号:
    0905950
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference Proposal: Talbot Workshops 2008-2010
会议提案:Talbot 研讨会 2008-2010
  • 批准号:
    0805838
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Travel: International Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures
旅行:地震运动数值模拟国际研讨会:波浪和破裂
  • 批准号:
    2346964
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Early Career Development (CAREER) Program Workshop for STEM Education Research at Minority-Serving Institutions
会议:少数族裔服务机构 STEM 教育研究早期职业发展 (CAREER) 计划研讨会
  • 批准号:
    2400690
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
  • 批准号:
    2401019
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The 2024 Gulf States Math Alliance Conference and Faculty Development Workshop
2024年海湾国家数学联盟会议暨教师发展研讨会
  • 批准号:
    2402471
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Workshop on Mobilizing Our Universities for Education on Energy Use, Carbon Emissions, and Climate Change
会议:动员大学开展能源使用、碳排放和气候变化教育研讨会
  • 批准号:
    2402605
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: 2024 Mammalian Synthetic Biology Workshop
会议:2024年哺乳动物合成生物学研讨会
  • 批准号:
    2412586
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Doctoral Consortium at Student Research Workshop at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)
会议:计算语言学协会 (NAACL) 北美分会年会学生研究研讨会上的博士联盟
  • 批准号:
    2415059
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: CRA-E Workshop: Supporting career building, student research experiences, and advancement of teaching track faculty
会议:CRA-E 研讨会:支持职业建设、学生研究经验和教学轨道教师的进步
  • 批准号:
    2421010
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了