Classical Methods in Motivic Homotopy Theory
动机同伦理论中的经典方法
基本信息
- 批准号:1906072
- 负责人:
- 金额:$ 15.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The subject of algebraic geometry concerns itself with the study of systems of polynomial equations. As it turns out, solving such systems exactly is, apart from a few very special cases, essentially impossible. We thus attempt to describe the solution sets more qualitatively. One classically fruitful approach to this is to consider the set of solutions as a topological space, an object sitting in some higher dimensional space. For instance, the equation x^2+y^2=1 describes a circle of radius 1. Topologists have invented invariants for qualitatively describing topological spaces, and we can just attempt to work out these invariants for the special spaces we are interested in. Taking this idea to its extreme, one arrives at a field called motivic homotopy theory. It provides novel ways for qualitatively describing solutions of systems of polynomial equations, and has in the past twenty years been successfully applied to several longstanding open problems in algebraic geometry. This project aims to deepen our understanding of motivic homotopy theory by exploring further not only its parallels with classical topology, but also what happens where these parallels break down.This project consists of several parts. One set of parts explores properties of motivic highly structured ring spectra, called normed spectra (introduced in collaboration with M. Hoyois). The Principal Investigator (P.I.) will (1) study power operations in normed spectra and deduce splitting results for normed spectra of positive characteristic and stability results for the motivic homology of symmetric groups and (2) construct further normed spectra, such as a normed spectrum structure on the motivic spectrum KO representing hermitian K-theory. Another set of parts explores the passage from unstable to stable motivic homotopy theory. Specifically the P.I. will (3) study the motivic Barratt-Priddy-Quillen map, and (4) study an unstable motivic homology Whitehead theorem. These goals will be achieved by using techniques from higher category theory, classical stable homotopy theory, algebraic topology and algebraic geometry. The results in parts (1) and (2) can be used to more effectively study algebraic varieties using cohomology theories; for example by exploiting the cohomology operations present in theories represented by normed spectra. Parts (3) and (4) are more useful for studying the motivic (stable) homotopy category itself, and hence the totality of all cohomology theories for algebraic varieties at once.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数几何学科涉及多项式方程组的研究。 事实证明,除了一些非常特殊的情况之外,精确地解决这样的系统基本上是不可能的。因此,我们尝试更定性地描述解决方案集。对此的一种经典有效方法是将解决方案集视为拓扑空间,即位于某个更高维度空间中的对象。 例如,方程 x^2+y^2=1 描述了一个半径为 1 的圆。拓扑学家发明了用于定性描述拓扑空间的不变量,我们可以尝试计算出我们感兴趣的特殊空间的这些不变量。将这一想法发挥到极致,我们就得到了一个称为动机同伦理论的领域。它提供了定性描述多项式方程组解的新颖方法,并且在过去二十年中已成功应用于代数几何中几个长期存在的开放问题。 该项目旨在通过进一步探索动机同伦理论与经典拓扑的相似之处,以及这些相似之处被打破时会发生什么,来加深我们对动机同伦理论的理解。该项目由几个部分组成。一组部分探索动机高度结构化环光谱的特性,称为赋范光谱(与 M. Hoyois 合作推出)。 首席研究员 (P.I.) 将 (1) 研究赋范谱中的幂运算,并推导出正特征赋范谱的分裂结果和对称群动机同调的稳定性结果,以及 (2) 构造进一步的赋范谱,例如代表埃尔米特 K 理论的动机谱 KO 上的赋范谱结构。 另一部分探讨了从不稳定动机同伦理论到稳定动机同伦理论的转变。具体来说,P.I.将 (3) 研究动机 Barratt-Priddy-Quillen 映射,以及 (4) 研究不稳定动机同调 Whitehead 定理。 这些目标将通过使用高范畴论、经典稳定同伦理论、代数拓扑和代数几何的技术来实现。 (1)和(2)部分的结果可以用来更有效地利用上同调理论研究代数簇;例如,通过利用赋范谱代表的理论中存在的上同调运算。第 (3) 和 (4) 部分对于研究动机(稳定)同伦范畴本身更有用,因此同时研究代数簇的所有上同调理论的整体。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haynes Miller其他文献
Haynes Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haynes Miller', 18)}}的其他基金
Conference: Young Topologists Meeting 2022
会议:2022 年青年拓扑学家会议
- 批准号:
2222375 - 财政年份:2022
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
2020 - 2022 Talbot Workshops on Mathematics Centering on Algebraic Topology
2020 - 2022年以代数拓扑为中心的塔尔伯特数学研讨会
- 批准号:
1953947 - 财政年份:2020
- 资助金额:
$ 15.89万 - 项目类别:
Continuing Grant
The Legacy of Daniel Quillen: K-Theory And Homotopical Algebra
Daniel Quillen 的遗产:K 理论和同伦代数
- 批准号:
1206449 - 财政年份:2012
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
Talbot Workshops 2011 - 2013
塔尔博特研讨会 2011 - 2013
- 批准号:
1007096 - 财政年份:2010
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
Mathematics Communication Space: Resource for Educators
数学交流空间:教育工作者资源
- 批准号:
1043632 - 财政年份:2010
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
Collaborative Research: Homotopy Theory: Applications and New Dimensions
合作研究:同伦理论:应用和新维度
- 批准号:
0905950 - 财政年份:2009
- 资助金额:
$ 15.89万 - 项目类别:
Continuing Grant
Summer Workshop on Homotopy Theory; Cambridge, MA
同伦理论夏季研讨会;
- 批准号:
0943108 - 财政年份:2009
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
Conference Proposal: Talbot Workshops 2008-2010
会议提案:Talbot 研讨会 2008-2010
- 批准号:
0805838 - 财政年份:2008
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
$ 15.89万 - 项目类别:
Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
- 批准号:
2686844 - 财政年份:2025
- 资助金额:
$ 15.89万 - 项目类别:
Studentship
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
- 批准号:
DE240100316 - 财政年份:2024
- 资助金额:
$ 15.89万 - 项目类别:
Discovery Early Career Researcher Award
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
- 批准号:
2907463 - 财政年份:2024
- 资助金额:
$ 15.89万 - 项目类别:
Studentship
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
- 批准号:
EP/Z532976/1 - 财政年份:2024
- 资助金额:
$ 15.89万 - 项目类别:
Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 15.89万 - 项目类别:
Research Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 15.89万 - 项目类别:
Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
- 批准号:
2348712 - 财政年份:2024
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
- 批准号:
2422291 - 财政年份:2024
- 资助金额:
$ 15.89万 - 项目类别:
Continuing Grant














{{item.name}}会员




