Probing the Earth's Outer Core for a Stratified Layer

探测地球外核的分层层

基本信息

  • 批准号:
    0944283
  • 负责人:
  • 金额:
    $ 18.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-12-01 至 2013-11-30
  • 项目状态:
    已结题

项目摘要

Core-mantle boundary science spans the deep Earth disciplines of seismology, dynamics, geochemistry, geomagnetism, and mineral physics. An outstanding question in deep Earth science is whether or not the iron core and silicate mantle chemically react with each other. These chemical reactions at the core-mantle boundary (CMB) would result in fine-scale outermost core and lowermost mantle layering that could be detected using seismic waves. Recent geochemical, dynamical, and geomagnetism considerations have supported core-side layering, but such a layer has not been unambiguously imaged. Better resolving outermost core structure has the potential of (a) spawning research activities in a number of fields that depend on accurate knowledge of the core, and (b) helping geoscientists better resolve issues relating to the current chemical state of the planet.Seismic studies of the outermost core rely on SmKS waves: mantle S-waves that convert to P-waves upon entering the core, reflect m-1 times from the underside of the CMB, then convert back to an S-wave for the final mantle leg. SmKS phases are the only seismic waves that have turning depths in outermost core. Past work indicates reduced P velocities at the top of the outer core, however, SmKS phases can be significantly contaminated by lower mantle heterogeneities. Also, a stably stratified outer core layer must be less dense, and hence predicts that the velocity of such a layer will be elevated, not decreased. Thus, the investigators seek to better image the outermost core, while accounting for anomalous mantle structure. Our goal is to seismically study the fine scale structure of Earth?s outermost core in unprecedented detail, to detect and characterize (if present) any outer core layering (or establish its absence). We first seek to better characterize the heterogeneous lowermost mantle that affects SmKS. Building on an existing whole mantle tomographic model, we seek to refine our understanding of the lowermost mantle by including a vastly increased data set of SmKS arrivals from (a) new SmKS data from recent regional and global seismic deployments obtained using a clustering algorithm optimized for processing large data volumes, and (b) existing data sets of two other seismologists. We will simultaneously invert for 3D mantle structure and 1D outer core velocity to assess the need for an updated 1D reference model while accounting for deep mantle heterogeneity. We will also forward model aspects of the broadband SmKS wavefield that depend strongly on the P-wave velocity and density in the outermost 10?s of km of the core. These experiments will include modeling S4KS-S3KS and S3KS-S2KS times, and the ?birth? of the S2KS and S3KS waves. These waveform-modeling experiments will include 1- and 2-D synthetic seismogram predictions, array analyses, and deconvolution algorithms to sharpen arrivals ? each of which will permit us to map any fine scale structure just beneath the CMB. This project will reveal properties of core-mantle reactions which are fundamental to understanding the evolution of the Earth. A unique feature of this proposal is combining the tools of tomography with those of detailed waveform modeling which offers cross-training for most of the proposal participants.
地核-地幔边界科学横跨地震学、动力学、地球化学、地磁和矿物物理学等深部地球学科。地球深部科学中的一个突出问题是铁核和硅酸盐地幔是否会相互发生化学反应。这些在地核-地幔边界(CMB)的化学反应将导致精细尺度的最外层地核和最下层地核分层,可以用地震波探测到。最近的地球化学、动力学和地磁方面的考虑支持了地核侧分层,但这样的层还没有得到明确的成像。更好地解析最外层地核结构具有以下潜力:(a)在许多依赖于地核准确知识的领域催生研究活动;(b)帮助地球科学家更好地解决与地球当前化学状态有关的问题。最外层地核的地震研究依赖于SmKS波:地幔s波在进入地核后转换为纵波,从CMB底部反射m-1次,然后转换回s波,用于最后的地幔分支。SmKS相位是唯一在最外层核有旋转深度的地震波。过去的工作表明,外核顶部的P速度降低,然而,SmKS相可能受到下地幔非均质性的严重污染。此外,一个稳定分层的外核层必须密度较低,因此预测这样一层的速度将会提高,而不是降低。因此,研究人员在考虑异常地幔结构的同时,寻求更好地描绘最外层核的图像。我们的目标是用地震研究地球的精细结构。以探测和表征(如果存在)任何外核层(或确定其不存在)。我们首先寻求更好地表征影响SmKS的异质性最下层地幔。在现有的完整地幔层析模型的基础上,我们试图通过包括大量增加的SmKS数据集来完善我们对最下层地幔的理解,这些数据集来自:(a)使用优化处理大数据量的聚类算法获得的最近区域和全球地震部署的新SmKS数据,以及(b)其他两位地震学家的现有数据集。我们将同时反演三维地幔结构和一维外核速度,以评估在考虑深部地幔非均质性的同时更新一维参考模型的必要性。我们还将提出宽带SmKS波场的模型方面,这些方面强烈依赖于最外层10?S (km)的核心。这些实验将包括S4KS-S3KS和S3KS-S2KS时间的建模,以及出生?S2KS和S3KS波这些波形建模实验将包括1- d和2-D合成地震记录预测、阵列分析和反褶积算法,以锐化到达?每一个都能让我们绘制出宇宙微波背景下的精细结构。这个项目将揭示核心-地幔反应的性质,这是理解地球演化的基础。该提案的一个独特之处在于将断层扫描工具与详细波形建模工具相结合,为大多数提案参与者提供了交叉培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Garnero其他文献

Edward Garnero的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Garnero', 18)}}的其他基金

EA: Upgrading the Geophysics Computing Facility at Arizona State University
EA:升级亚利桑那州立大学的地球物理计算设施
  • 批准号:
    2348594
  • 财政年份:
    2024
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards improved imaging of the outermost core through determination of the effects of lowermost mantle heterogeneity and anisotropy
合作研究:通过确定最低地幔异质性和各向异性的影响来改善最外层地核的成像
  • 批准号:
    2027077
  • 财政年份:
    2020
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant
Global P, SV, and converted wave measurements for improved lower mantle P and S structure studies
全球 P、SV 和转换波测量,以改进下地幔 P 和 S 结构研究
  • 批准号:
    1853911
  • 财政年份:
    2019
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant
CSEDI: Ultra-High Velocity Zones (UHVZs) at the core-mantle boundary
CSEDI:核幔边界处的超高速带 (UHVZ)
  • 批准号:
    1855624
  • 财政年份:
    2019
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant
2017 Interior of the Earth GRC/GRS
2017 地球内部 GRC/GRS
  • 批准号:
    1739121
  • 财政年份:
    2017
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Antarctic Seismic Investigations of ULVZ Structure
合作研究:南极 ULVZ 结构地震调查
  • 批准号:
    1643387
  • 财政年份:
    2017
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving lower mantle seismic sampling and model resolution using multi-bounce and diffracted waves
合作研究:利用多次反射波和衍射波提高下地幔地震采样和模型分辨率
  • 批准号:
    1648817
  • 财政年份:
    2016
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: Deep Mantle Cycling of Oceanic Crust
CSEDI合作研究:洋壳深部地幔循环
  • 批准号:
    1401270
  • 财政年份:
    2014
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Continuing Grant
Collaborative Project: EaGER - CSEDI: Towards an integrated view of deep mantle structure, temperature, and composition
合作项目:EaGER - CSEDI:对深部地幔结构、温度和成分的综合看法
  • 批准号:
    1341817
  • 财政年份:
    2013
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant
CSEDI: Structure and Dynamics of Large-Scale Lower Mantle Compositional Heterogeneity
CSEDI:大规模下地幔成分异质性的结构和动力学
  • 批准号:
    1161038
  • 财政年份:
    2012
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Google Earth Engine云平台的遥感图像去云研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant
The Rare Earth Potential of the Gascoyne Region of Western Australia
西澳大利亚加斯科因地区的稀土潜力
  • 批准号:
    LP230100173
  • 财政年份:
    2024
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Linkage Projects
NI: DEEPHEAT: Digging deep Earth for heat to promote environmental sustainability
NI:DEEPHEAT:挖掘地球深处的热量以促进环境可持续发展
  • 批准号:
    NE/W004127/2
  • 财政年份:
    2024
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Research Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
  • 批准号:
    2333102
  • 财政年份:
    2024
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Continuing Grant
CAS: Functionalization of Earth-Abundant, Molecular Group 4 Photosensitizers for Photochemical Applications
CAS:用于光化学应用的地球丰富的 4 分子族光敏剂的功能化
  • 批准号:
    2349986
  • 财政年份:
    2024
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
  • 批准号:
    2414424
  • 财政年份:
    2024
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant
SBIR Phase I: Sustainable Rare Earth Element Production from Coal Combustion Byproducts
SBIR 第一阶段:利用煤炭燃烧副产品可持续生产稀土元素
  • 批准号:
    2335379
  • 财政年份:
    2024
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant
Creation of a Membraneless Protocell with Earth-abundant Transition Metal Catalysts
使用地球丰富的过渡金属催化剂创建无膜原始细胞
  • 批准号:
    24K17795
  • 财政年份:
    2024
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
AI4PEX: Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models
AI4PEX:人工智能和机器学习,用于增强地球系统模型中过程和极值的表示
  • 批准号:
    10103109
  • 财政年份:
    2024
  • 资助金额:
    $ 18.43万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了