EAGER - Nanostructured Plasmonic Contacts for Enhanced Efficiency in Organic Photovoltaic Cells

EAGER - 纳米结构等离子触点可提高有机光伏电池的效率

基本信息

  • 批准号:
    0946723
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

0946723HolmesSummaryThe development of low-cost renewable and sustainable energy sources is the foremost challenge facing humanity. While solar energy conversion is currently too costly to compete with fossil fuel sources, organic photovoltaic cells (OPVs) will redefine this energy balance. OPVs can be processed using high-throughput methods, and have demonstrated efficiencies 6%. The proposed research outlines a new approach to overcome the exciton diffusion bottleneck that limits OPV absorption efficiency. Intellectual Merit: Thin film OPVs based on graded donor-acceptor heterojunctions (GHJs) will be incorporated into plasmonic nanocavity arrays to increase the absorption and power conversion efficiencies of these devices. The use of a plasmonic nanocavity permits subwavelength confinement and resonant enhancement of the optical field. The combination of a GHJ OPV with a plasmonic nanocavity array has the potential to be transformative by enabling a high level of tunability and control over the film microstructure and internal optical field distribution to realize high efficiency. A new architecture combining optical field enhancement from a plasmonic nanocavity array is introduced to overcome the exciton bottleneck and maximize absorption in OPVs. This enhancement is attractive since it is long range, enhancing absorption throughout the organic active layers. The use of a nanocavity permits the spectral response of the enhancement to be tuned to overlap with active material absorption. The OPVs proposed in this work will utilize GHJs to realize exciton dissociation. The novel use of a GHJ is attractive since it balances the need for efficient exciton diffusion (large interface area) with efficient charge collection (graded pathways for transport). The growth of GHJs is tunable, enabling a range of compositions through which to correlate morphology, exciton/charge transport, and performance. Broader Impact: Graduate students associated with this project will acquire an interdisciplinary spectrum of knowledge ranging from nanofabrication and plasmonics, to molecular photophysics and OPV performance. Students will also be educated in renewable energy, understanding the position of OPVs in the broader energy landscape. Discussions of photovoltaics and plasmonics are already being integrated into various undergraduate and graduate courses taught by the PIs. Undergraduate research opportunities will be enhanced through continuing relationships with the University of Minnesota UROP program and the National Science Foundation REU program. These activities are complemented by plans to disseminate results from the proposed work to industry via on-campus workshops and an industrial affiliates program.
开发低成本的可再生能源和可持续能源是人类面临的首要挑战。虽然目前太阳能转换成本太高,无法与化石燃料竞争,但有机光伏电池(opv)将重新定义这种能量平衡。opv可以使用高通量方法进行处理,并证明效率为6%。提出的研究概述了克服限制OPV吸收效率的激子扩散瓶颈的新方法。知识优势:基于梯度供体-受体异质结(GHJs)的薄膜opv将被集成到等离子体纳米腔阵列中,以提高这些器件的吸收和功率转换效率。等离子体纳米腔的使用允许亚波长限制和光场的共振增强。GHJ OPV与等离子体纳米腔阵列的结合具有变革性的潜力,可以实现对薄膜微观结构和内部光场分布的高度可调性和控制,从而实现高效率。提出了一种结合等离子体纳米腔阵列光场增强的新结构,以克服激子瓶颈,最大限度地提高光腔的吸收。这种增强是有吸引力的,因为它是长距离的,增强整个有机活性层的吸收。纳米腔的使用允许增强的光谱响应被调谐到与活性物质吸收重叠。本研究提出的opv将利用ghj来实现激子解离。GHJ的新用途是有吸引力的,因为它平衡了对有效激子扩散(大界面面积)和有效电荷收集(梯度传输途径)的需求。ghj的生长是可调的,可以通过一系列的成分来关联形态、激子/电荷输运和性能。更广泛的影响:与该项目相关的研究生将获得跨学科的知识范围,从纳米制造和等离子体,到分子光物理学和OPV性能。学生还将接受可再生能源方面的教育,了解opv在更广泛的能源格局中的地位。关于光电和等离子体的讨论已经被整合到pi教授的各种本科和研究生课程中。通过与明尼苏达大学UROP计划和国家科学基金会REU计划的持续关系,本科生的研究机会将得到加强。这些活动还辅之以通过校内讲习班和工业附属方案向工业界传播拟议工作成果的计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Russell Holmes其他文献

Russell Holmes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Russell Holmes', 18)}}的其他基金

The Exchange Mechanism and Exciton Migration in Organic Semiconductors
有机半导体中的交换机制和激子迁移
  • 批准号:
    1708177
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Engineering interfacial gates for enhanced functionality in organic optoelectronic devices
设计界面门以增强有机光电器件的功能
  • 批准号:
    1509121
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Investigating the Relationship Between Molecular Relaxation and Exciton Diffusion in Organic Semiconductor Materials
研究有机半导体材料中分子弛豫与激子扩散之间的关系
  • 批准号:
    1307066
  • 财政年份:
    2013
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Dynamics of exciton diffusion in organic semiconductor materials
有机半导体材料中激子扩散动力学
  • 批准号:
    1006566
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Hybrid Organic-Inorganic Infrared Light-Emitting Devices using Group IV Semiconductor Nanoparticles
使用 IV 族半导体纳米颗粒的混合有机-无机红外发光器件
  • 批准号:
    0925624
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Manufacturing Nanostructured Metallic Materials via 3D Printed Polymers
通过 3D 打印聚合物制造纳米结构金属材料
  • 批准号:
    DE240100917
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Early Career Researcher Award
SBIR Phase I: All-Semiconductor Nanostructured Lenses for High-Tech Industries
SBIR 第一阶段:用于高科技行业的全半导体纳米结构镜头
  • 批准号:
    2335588
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:使用分层纳米结构动力系统进行二维波动工程
  • 批准号:
    2337507
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Design theory-based nanostructured leaf-vein networks for selective VOC sensing
基于理论的纳米结构叶脉网络用于选择性 VOC 传感
  • 批准号:
    EP/W022451/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Nanostructured Silicon-Based Wearable and Implantable Biosensors
纳米结构硅基可穿戴和植入式生物传感器
  • 批准号:
    FL220100185
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Australian Laureate Fellowships
Strain-Hardening Mechanisms in Ferrous Bulk Nanostructured Metals: Towards Managing Ultra-high Strength and Large Ductility
黑色金属块体纳米结构金属的应变硬化机制:实现超高强度和大延展性
  • 批准号:
    23H00234
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Parametric design software for nanostructured CRISPR payloads
用于纳米结构 CRISPR 有效负载的参数化设计软件
  • 批准号:
    10602823
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
Design theory-based nanostructured leaf-vein networks for selective VOC sensing
基于理论的纳米结构叶脉网络用于选择性 VOC 传感
  • 批准号:
    EP/W024284/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Development of Nanostructured Scaffolds for Stem Cell Culture to Directly Regulate Cellular Functions via Natural Polysaccharide Nanofibers
开发用于干细胞培养的纳米结构支架,通过天然多糖纳米纤维直接调节细胞功能
  • 批准号:
    23H00345
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了