Engineering interfacial gates for enhanced functionality in organic optoelectronic devices
设计界面门以增强有机光电器件的功能
基本信息
- 批准号:1509121
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Organic semiconductors are a novel class of electronic materials currently receiving attention for next generation information display, highly efficient solid-state lighting, and low-cost solar energy conversion applications. These materials are of interest for their high performance and also for their compatibility with high throughput, roll-to-roll processing techniques that could ultimately enable low-cost device and system fabrication. In all of these applications, a critical component to enhanced device design and overall high performance is the ability to engineer the confinement and motion of molecular excited states created under electrical (as in a light-emitting device, LED) or optical excitation (as in a solar cell). Unlike the more familiar case of charge carriers (electrons or holes), it has to date proved difficult to affect the motion of charge-neutral molecular excited states through the application of an external voltage. The proposed work will develop novel, specially designed interfaces capable of acting as gates, permitting the funneling of molecular excited states to specific locations in a device. In an LED, this could permit an enhanced efficiency of luminescence, while in a solar cell this could permit a more efficient conversion of molecular excited states into useable electric current using simple device architectures. Overall, the proposed work will lead to the design of advanced optoelectronic devices for light-emission and photoconversion, among others.Technical:The design of many organic optoelectronic devices including photovoltaic cells (OPVs) and light-emitting devices (OLEDs) is heavily impacted by the excitonic character of these materials. Excitation of an organic semiconductor leads to the formation of tightly bound excitons that resist dissociation by both thermal and electric means. In OPVs, the exciton must be dissociated into its component charge carriers in order to generate a photocurrent. Dissociation is typically realized at an electron donor-acceptor interface, necessitating efficient exciton diffusion from the point of photogeneration to the point of dissociation. A similar challenge in exciton management exists in OLEDs, where it is critical to confine excitons to the device emissive-layer, and avoid spatial overlap between the exciton and polaron densities to reduce non-radiative quenching processes. In state-of-the-art devices, problems related to exciton management are often dealt with by affecting large-scale changes in device architecture, which while effective, avoid addressing the actual processes responsible for transport. For instance, in OPVs, exciton harvesting is maximized through the use of blended donor-acceptor structures known as a bulk heterojunctions. In OLEDs, confinement is often realized through the use of wide-energy gap blocking layers. This proposal forges an alternate and more direct approach to the challenge of exciton management. Work is centered on the use of architectures that directly impact the rates of excitonic energy transfer responsible for diffusion. Preliminary results suggest that it is possible to construct one-way excitonic gates, which overcome the limitations of normal diffusion and permit direct exciton transport. The novelty in this approach is in the use of device design concepts that directly address deficiencies in exciton migration. The ability to direct exciton transport has broad implications for the design of OPVs and OLEDs in terms of addressing the fundamental excitonic challenges inherent in device operation.
有机半导体是一类新型的电子材料,目前正受到下一代信息显示、高效固态照明和低成本太阳能转换应用的关注。这些材料由于其高性能以及它们与高产量、卷对卷处理技术的兼容性而受到关注,所述卷对卷处理技术最终能够实现低成本的器件和系统制造。 在所有这些应用中,增强器件设计和整体高性能的关键组成部分是设计在电(如发光器件,LED)或光激发(如太阳能电池)下产生的分子激发态的限制和运动的能力。 与更熟悉的电荷载流子(电子或空穴)的情况不同,迄今为止已经证明很难通过施加外部电压来影响电荷中性分子激发态的运动。 拟议的工作将开发新的,专门设计的接口,能够作为门,允许分子激发态的功能在设备中的特定位置。 在LED中,这可以允许增强的发光效率,而在太阳能电池中,这可以允许使用简单的器件架构将分子激发态更有效地转换为可用的电流。 总体而言,所提出的工作将导致先进的光电子器件的设计,用于光发射和光转换,除others.Technical:许多有机光电子器件的设计,包括光伏电池(OPV)和发光器件(OLED)的激子字符这些材料的严重影响。有机半导体的激发导致形成紧密结合的激子,其抵抗通过热和电手段的解离。在OPV中,激子必须解离成其组分电荷载流子以产生光电流。解离通常在电子供体-受体界面处实现,需要从光生点到解离点的有效激子扩散。激子管理中的类似挑战存在于OLED中,其中关键的是将激子限制到器件发射层,并避免激子和极化子密度之间的空间重叠以减少非辐射猝灭过程。在最先进的设备中,与激子管理相关的问题通常通过影响设备架构中的大规模变化来处理,这虽然有效,但避免了解决负责传输的实际过程。例如,在OPV中,通过使用被称为本体异质结的共混供体-受体结构使激子收获最大化。在OLED中,限制通常通过使用宽能隙阻挡层来实现。这一提议为应对激子管理的挑战提供了一种替代和更直接的方法。工作集中在直接影响负责扩散的激子能量转移速率的架构的使用上。初步结果表明,它是可能的,以建立单向激子门,克服正常扩散的限制,并允许直接激子传输。这种方法的新奇在于使用了直接解决激子迁移缺陷的器件设计概念。 在解决器件操作中固有的基本激子挑战方面,引导激子传输的能力对OPV和OLED的设计具有广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell Holmes其他文献
Russell Holmes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell Holmes', 18)}}的其他基金
The Exchange Mechanism and Exciton Migration in Organic Semiconductors
有机半导体中的交换机制和激子迁移
- 批准号:
1708177 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Investigating the Relationship Between Molecular Relaxation and Exciton Diffusion in Organic Semiconductor Materials
研究有机半导体材料中分子弛豫与激子扩散之间的关系
- 批准号:
1307066 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Dynamics of exciton diffusion in organic semiconductor materials
有机半导体材料中激子扩散动力学
- 批准号:
1006566 - 财政年份:2010
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
EAGER - Nanostructured Plasmonic Contacts for Enhanced Efficiency in Organic Photovoltaic Cells
EAGER - 纳米结构等离子触点可提高有机光伏电池的效率
- 批准号:
0946723 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Hybrid Organic-Inorganic Infrared Light-Emitting Devices using Group IV Semiconductor Nanoparticles
使用 IV 族半导体纳米颗粒的混合有机-无机红外发光器件
- 批准号:
0925624 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
基于电荷泄漏与静电击穿效应的摩擦纳米发电机及电荷转移机制研
究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
MBR中溶解性微生物产物膜污染界面微距作用机制定量解析
- 批准号:50908133
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
- 批准号:20977008
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Direct Measurement of Interfacial Energies in Ceramics
陶瓷界面能的直接测量
- 批准号:
2414106 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
CAREER: Elucidating the Correlative Interfacial Solvation, Nucleation, and Growth Processes in Battery Electrolytes
职业:阐明电池电解质中相关的界面溶剂化、成核和生长过程
- 批准号:
2339175 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Enhancement of interfacial thermal transport through evanescent electric field mediated acoustic phonon transmission for efficient cooling of high power Gallium Nitride devices
通过瞬逝电场介导的声声子传输增强界面热传输,以实现高功率氮化镓器件的高效冷却
- 批准号:
2336038 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: Controlling the properties of oxide-encapsulated metals for interfacial catalysis
合作研究:控制氧化物封装金属的界面催化性能
- 批准号:
2311986 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Interfacial Engineering and Additive Printing of Flexible Thermoelectric Materials
职业:柔性热电材料的界面工程和增材印刷
- 批准号:
2238996 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Engineering Tissue Level Targeting of Biologic Drugs via Automated Interfacial Microneedle Pumps
通过自动化界面微针泵工程化组织水平靶向生物药物
- 批准号:
10710767 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Microenvironmental characterization and manipulation to prevent secondary caries
预防继发龋的微环境特征和操作
- 批准号:
10814030 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Dentin Biomodification for Optimization of Bioadhesive Dental Restorations
牙本质生物改性优化生物粘附性牙齿修复体
- 批准号:
10874883 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别: