EAGER: A New Algorithmic and Graph Model for Networking in Challenged Environments
EAGER:一种用于挑战环境中网络的新算法和图形模型
基本信息
- 批准号:0948184
- 负责人:
- 金额:$ 19.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
EAGER: A New Algorithmic and Graph Model for Networking in Challenged EnvironmentsThis EAGER proposal presents a generalized graph model that can capture mobility in Networking in Challenged Environments (NICE). This model is called a weighted evolving graph which captures time-space dynamics while remaining simple enough to maintain most of the elegant structure of the traditional graph model. We first present several path optimization problems based on different metrics, including earliest completion, minimum hop, fastest, and maximum reliability. We then extend several graph concepts in this new model.The proposal addresses one fundamental issue: can we develop a localized solution in which the graph is "trimmed" (by removing nodes/links across time and space) using only local information at each node? The merit of a trimmed graph is the reduction of searching complexity for routing and broadcasting.We plan to apply the proposed model to three different applications: (a) dynamic sensor networks with frequently switched on/off sensors, (b) mobile networks with cyclic movement trajectories (such as vehicular networks), and (c) people networks in which college students carrying iMotes/smart phones maintain contact records during periodic meetings and classes.The proposed graph theoretic model to capture NICE is a simple one. The proposal presents a promising and unique way of applying this graph model to address a new set of path optimization problems and other graph concepts. The proposed model can be applied to three important applications in dynamic sensor networks, DTNs, and people networks. We envision that insights and results from this research will provide guidelines for modeling and analyzing NICE. This research will also exploit and contribute to fundamental theories on dynamic and challenged networks under the generalized graph abstraction.
EIGER:挑战环境中网络的新算法和图模型这一建议提出了一个通用的图模型,该模型可以捕获挑战环境中网络的移动性(NICE)。这个模型被称为加权演化图,它捕捉了时空动态,同时保持了足够简单,以保持传统图模型的大部分优雅结构。我们首先提出了几个基于不同度量的路径优化问题,包括最早完成、最小跳数、最快和最大可靠性。然后,我们在这个新的模型中扩展了几个图的概念。该方案解决了一个基本问题:我们是否可以开发一个本地化的解决方案,在这个方案中,只使用每个节点上的局部信息来“修剪”图(通过移除跨时间和空间的节点/链接)?我们计划将该模型应用于三种不同的应用:(A)具有频繁开关传感器的动态传感器网络,(B)具有周期性运动轨迹的移动网络(如车辆网络),以及(C)大学生携带iMotes/智能手机在周期性会议和课堂上维护联系记录的人际网络。该方案提出了一种应用该图模型来解决一组新的路径优化问题和其他图概念的有前途的独特方法。该模型可应用于动态传感器网络、动态时延网络和人员网络中的三个重要应用。我们预计,这项研究的见解和结果将为NICE的建模和分析提供指导。这项研究还将对广义图抽象下的动态和挑战网络的基本理论进行开拓和贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Wu其他文献
Experimental study on drag reduction control of porous media wall turbulence
多孔介质壁湍流减阻控制实验研究
- DOI:
10.1063/5.0130773 - 发表时间:
2022-11 - 期刊:
- 影响因子:1.6
- 作者:
Wenjie Kong;Hao Dong;Yidi Zhao;Jie Wu;Haodong Deng;Zhou Jin - 通讯作者:
Zhou Jin
Energy management of new energy ships based on maximum power point tracking of particle swarm optimization
基于粒子群优化最大功率点跟踪的新能源船舶能量管理
- DOI:
10.1109/icma54519.2022.9856337 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jie Wu;Pengfei Zhi;Wanlu Zhu;Chunpeng Jin - 通讯作者:
Chunpeng Jin
Afinancial CGE model analysis: Oil price shocks and monetary policy
金融CGE模型分析:油价冲击与货币政策
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:4.7
- 作者:
Shimo Lin;Yan Xia;Ying Fan;Jie Wu - 通讯作者:
Jie Wu
A highly selective and sensitive Zn(II) coordination polymer luminescent sensor for Al3+ and NACs in the aqueous phase
一种高选择性、高灵敏度的 Zn(II) 配位聚合物发光传感器,用于检测水相中的 Al3 和 NACs
- DOI:
10.1039/c7qi00549k - 发表时间:
2017-11 - 期刊:
- 影响因子:0
- 作者:
Xiao Zhang;Xuan Luo;Nanxi Zhang;Jie Wu;Yongqing Huang - 通讯作者:
Yongqing Huang
Burstiness-AwareResource Reservation for Server Consolidation in Computing louds
计算大声中服务器整合的突发感知资源预留
- DOI:
10.1109/tpds.2015.2425403 - 发表时间:
- 期刊:
- 影响因子:5.3
- 作者:
Sheng Zhang;Zhuzhong Qian;Zhaoyi Luo;Jie Wu;Sanglu Lu - 通讯作者:
Sanglu Lu
Jie Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Wu', 18)}}的其他基金
SpecEES: Collaborative Research: Study of the Tradeoff between Spectrum Allocation Efficiency and Operation Privacy in Dynamic Spectrum Access Systems
SpecEES:协作研究:动态频谱接入系统中频谱分配效率和操作隐私之间的权衡研究
- 批准号:
1824440 - 财政年份:2018
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Coexistence of Heterogeneous Wireless Access Technologies in the 5 GHz Bands
NeTS:媒介:协作研究:5 GHz 频段异构无线接入技术的共存
- 批准号:
1564128 - 财政年份:2016
- 资助金额:
$ 19.94万 - 项目类别:
Continuing Grant
REU Site: Enhancing Undergraduate Experience in Mobile Cloud Computing
REU 网站:增强本科生在移动云计算方面的经验
- 批准号:
1460971 - 财政年份:2015
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
EAGER: US Ignite: Mobility-Enhanced Public Safety Surveillance System using 3D Cameras and High Speed Broadband Networks
EAGER:US Ignite:使用 3D 摄像头和高速宽带网络的移动增强型公共安全监控系统
- 批准号:
1449860 - 财政年份:2014
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Cyber-Enabled Smart Systems for Seamless Secure Monitoring and Communications
合作研究:CCSS:用于无缝安全监控和通信的网络智能系统
- 批准号:
1231461 - 财政年份:2012
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Mobile Content Sharing Networks: Theory to Implementation
NeTS:媒介:协作研究:移动内容共享网络:理论到实现
- 批准号:
1065444 - 财政年份:2011
- 资助金额:
$ 19.94万 - 项目类别:
Continuing Grant
EAGER:A Meso-Scale GENI WiMAX Project
EAGER:中型GENI WiMAX项目
- 批准号:
1138963 - 财政年份:2011
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
MRI-R2: Acquisition: A Hybrid High-Performance GPU/CPU System
MRI-R2:采集:混合高性能 GPU/CPU 系统
- 批准号:
0958854 - 财政年份:2010
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342245 - 财政年份:2024
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
CAREER: New Frameworks for Ethical Statistical Learning: Algorithmic Fairness and Privacy
职业:道德统计学习的新框架:算法公平性和隐私
- 批准号:
2340241 - 财政年份:2024
- 资助金额:
$ 19.94万 - 项目类别:
Continuing Grant
Equality in the Algorithmic Age: A New Frontier for European Union Law?
算法时代的平等:欧盟法律的新领域?
- 批准号:
1071088 - 财政年份:2023
- 资助金额:
$ 19.94万 - 项目类别:
Studentship
Algorithmic problems emerging in new networking technologies
新网络技术中出现的算法问题
- 批准号:
RGPIN-2018-03900 - 财政年份:2022
- 资助金额:
$ 19.94万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic problems emerging in new networking technologies
新网络技术中出现的算法问题
- 批准号:
RGPIN-2018-03900 - 财政年份:2021
- 资助金额:
$ 19.94万 - 项目类别:
Discovery Grants Program - Individual
Cooperative Game Theory: New Mathematical and Algorithmic Approaches.
合作博弈论:新的数学和算法方法。
- 批准号:
EP/P021042/2 - 财政年份:2021
- 资助金额:
$ 19.94万 - 项目类别:
Fellowship
Collaborative Research: New Perspectives on Deep Learning: Bridging Approximation, Statistical, and Algorithmic Theories
合作研究:深度学习的新视角:桥接近似、统计和算法理论
- 批准号:
2134077 - 财政年份:2021
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
Collaborative Research: New Perspectives on Deep Learning: Bridging Approximation, Statistical, and Algorithmic Theories
合作研究:深度学习的新视角:桥接近似、统计和算法理论
- 批准号:
2134133 - 财政年份:2021
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
Collaborative Research: New Perspectives on Deep Learning: Bridging Approximation, Statistical, and Algorithmic Theories
合作研究:深度学习的新视角:桥接近似、统计和算法理论
- 批准号:
2134140 - 财政年份:2021
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant