Cooperative Game Theory: New Mathematical and Algorithmic Approaches.

合作博弈论:新的数学和算法方法。

基本信息

  • 批准号:
    EP/P021042/2
  • 负责人:
  • 金额:
    $ 9.31万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

Cooperative game theory is a branch of game theory that offers a conceptually simple and intuitive mathematical framework to model collaborative settings involving multiple decision makers (players). Solutions of cooperative games offer different ways to share the profit or cost among the players in a way that ensures the fairness and stability of the collaboration, while considering the possibility that any subgroup of players has the option to form their own coalition. The focus of this project is on the most generic class of cooperative games - the integer maximisation games. These games arise in settings where the players in each coalition need to solve an integer maximisation problem to achieve the best interests of their coalition. This proposed research addresses a fundamental question of how to distribute payoff under a new paradigm with the presence of uncertainty and in the context of reasonably large games. Often, formulating a real-life application as a cooperative game, where relevant, is not a difficult task. The part that discourages the use of cooperative game theory is the difficulty in undertaking numerical computation of the solutions due to their combinatorial structures. This is particularly true in integer maximisation games where the set of inputs of the problem, i.e., the value that each coalition can create, involves solving an exponentially large number of integer linear programs. The first part of the proposed research provides efficient algorithms for payoff allocation in reasonably large integer maximisation games. In addition, an open-source software package for computing these solutions and showcase real-world applications is made available. This promises to extend the impact to wide groups of practitioners and academics who want to apply cooperative game theory to profit-/cost-sharing applications. The proposed project also aims to study cooperative games with uncertain payoffs. While uncertainty is a natural part of most decision-making problems, the issue has been largely ignored in the literature of cooperative game theory and there is currently no rigorous framework for handling these. We propose a new framework where fundamental concepts such as stability and fairness are redefined in the face of uncertainty.
合作博弈论是博弈论的一个分支,它提供了一个概念简单而直观的数学框架来模拟涉及多个决策者(玩家)的协作设置。合作博弈的解决方案提供了不同的方式在参与者之间分享利润或成本,以确保合作的公平性和稳定性,同时考虑到任何参与者的子群体都有可能组成自己的联盟。这个项目的重点是最普遍的一类合作博弈——整数最大化博弈。在这些博弈中,每个联盟中的参与者需要解决一个整数最大化问题,以实现联盟的最佳利益。这一提议的研究解决了一个基本问题,即在存在不确定性的新范式下,在合理的大型博弈背景下,如何分配收益。通常情况下,将现实生活中的应用程序描述为合作游戏并不是一项困难的任务。阻碍合作博弈论应用的部分是由于其组合结构而难以进行数值计算。这在整数最大化游戏中尤其如此,因为问题的输入集,即每个联盟可以创造的价值,涉及解决指数数量的整数线性程序。本研究的第一部分提供了在合理大的整数最大化博弈中分配收益的有效算法。此外,还提供了用于计算这些解决方案和展示实际应用程序的开源软件包。这有望将影响扩大到希望将合作博弈论应用于利润/成本共享应用的广泛从业者和学者群体。该项目还旨在研究具有不确定收益的合作博弈。虽然不确定性是大多数决策问题的自然组成部分,但在合作博弈论的文献中,这个问题在很大程度上被忽视了,目前也没有严格的框架来处理这些问题。我们提出了一个新的框架,在面对不确定性时,重新定义稳定和公平等基本概念。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Last round convergence and no-dynamic regret in asymmetric repeated games
非对称重复博弈中的最后一轮收敛和无动态遗憾
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dinh L.C.
  • 通讯作者:
    Dinh L.C.
Game of Banks -Coopetition Framework for ATM Network Cost Sharing
银行博弈-ATM网络成本分摊合作框架
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tri-Dung Nguyen
  • 通讯作者:
    Tri-Dung Nguyen
Achieving Better Regret against Strategic Adversaries
对战略对手实现更好的后悔
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cong Dinh
  • 通讯作者:
    Cong Dinh
A Model of Coopetitive Resource Sharing
竞争性资源共享模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen B.
  • 通讯作者:
    Chen B.
Multi-Option Descending Clock Auction
多选项降序时钟拍卖
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nguyen T-D
  • 通讯作者:
    Nguyen T-D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tri-Dung Nguyen其他文献

The fairest core in cooperative games with transferable utilities
  • DOI:
    10.1016/j.orl.2014.11.001
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tri-Dung Nguyen
  • 通讯作者:
    Tri-Dung Nguyen
Game of banks - biform game theoretical framework for ATM network cost sharing
  • DOI:
    10.1016/j.ejor.2024.02.036
  • 发表时间:
    2024-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tri-Dung Nguyen
  • 通讯作者:
    Tri-Dung Nguyen
A fast approximation algorithm for solving the complete set packing problem
  • DOI:
    10.1016/j.ejor.2014.01.024
  • 发表时间:
    2014-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tri-Dung Nguyen
  • 通讯作者:
    Tri-Dung Nguyen
Simplifying the Kohlberg Criterion on the Nucleolus

Tri-Dung Nguyen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tri-Dung Nguyen', 18)}}的其他基金

Cooperative Game Theory: New Mathematical and Algorithmic Approaches.
合作博弈论:新的数学和算法方法。
  • 批准号:
    EP/P021042/1
  • 财政年份:
    2017
  • 资助金额:
    $ 9.31万
  • 项目类别:
    Fellowship

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于 Nash game 法研究奇异 Itô 随机系统的 H2/H∞ 控制
  • 批准号:
    61703248
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Axiomatic study of accounting standards by cooperative game theory
合作博弈论会计准则的公理化研究
  • 批准号:
    22K01790
  • 财政年份:
    2022
  • 资助金额:
    $ 9.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Strategic foundations of cooperative game theory from the view of anti-duality, and their applications to labor market matching
反二元性视角下合作博弈论的战略基础及其在劳动力市场匹配中的应用
  • 批准号:
    20K01552
  • 财政年份:
    2020
  • 资助金额:
    $ 9.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tackling pests using game theory to support cooperative management
利用博弈论应对害虫以支持合作管理
  • 批准号:
    LP180100259
  • 财政年份:
    2019
  • 资助金额:
    $ 9.31万
  • 项目类别:
    Linkage Projects
Collective Decision Making in Dynamic Models: Towards the Construction of Dynamic Stochastic Cooperative Game Theory
动态模型中的集体决策:动态随机合作博弈论的构建
  • 批准号:
    17K18561
  • 财政年份:
    2017
  • 资助金额:
    $ 9.31万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Cooperative Game Theory: New Mathematical and Algorithmic Approaches.
合作博弈论:新的数学和算法方法。
  • 批准号:
    EP/P021042/1
  • 财政年份:
    2017
  • 资助金额:
    $ 9.31万
  • 项目类别:
    Fellowship
New Theory and Experiment of Coalition formation and Payoff Allocation in Cooperative Game
合作博弈中联盟形成与收益分配的新理论与实验
  • 批准号:
    17H02503
  • 财政年份:
    2017
  • 资助金额:
    $ 9.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Solidarity, monotonicity, and externalities in cooperative game theory
合作博弈论中的团结性、单调性和外部性
  • 批准号:
    288880950
  • 财政年份:
    2016
  • 资助金额:
    $ 9.31万
  • 项目类别:
    Research Grants
Solidarity and monotonicity in cooperative game theory
合作博弈论中的团结性和单调性
  • 批准号:
    261749485
  • 财政年份:
    2014
  • 资助金额:
    $ 9.31万
  • 项目类别:
    Research Grants
The Design of Financial Reporting System using Cooperative Game Theory and Simulation
利用合作博弈论与仿真的财务报告系统设计
  • 批准号:
    25590104
  • 财政年份:
    2013
  • 资助金额:
    $ 9.31万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Complexity of Problems in Cooperative Game Theory
合作博弈论问题的复杂性
  • 批准号:
    201252895
  • 财政年份:
    2011
  • 资助金额:
    $ 9.31万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了