EAGER: Creation and Manipulation of Quantum States in Oxide Nanostructures with a Low-Temperature Atomic-Force Microscope

EAGER:使用低温原子力显微镜在氧化物纳米结构中创建和操纵量子态

基本信息

  • 批准号:
    0948671
  • 负责人:
  • 金额:
    $ 7.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTIONThis research project seeks to understand the basic operating principle behind a newly discovered method for fabricating circuits whose size approaches atomic-scale dimensions. Current computer technology is based on silicon transistors which are getting close to their smallest possible size. Oxide nanoelectronics offers a new way to create transistors and other circuit elements that are required for information technology, but many basic properties are still not well understood. One way of developing such an understanding is to use a technique called atomic force microscopy, in which a small needle-like probe is scanned over a surface to measure the shape as well as alter the properties by using applied voltages to the probe. This research project will use an extension of the capabilities of such an instrument to allow the properties to be measured at much lower temperatures than was previously possible. Such control will help to uncover some of the basic mechanisms for writing and erasing nanoscale transistors and other devices. The project will provide formative experiences for the graduate student involved in the project. The low-temperature images are likely to create appealing visual representations of these nanostructures, ones that will appeal to young, impressionable students choosing their future academic trajectories.TECHNICAL DETAILSA novel method for writing and modifying conducting nanostructures at the interface between two insulators (LaAlO3 and SrTiO3) has been invented by the PI. This project will extend the operating range of a vacuum atomic force microscope (AFM) so that oxide nanostructures can be cooled to 4 K while being probed by a conducting AFM tip. At low temperatures, thermal activation of carriers from donor site is suppressed, revealing the underlying potential produced by the AFM writing process. The tip will act like a local gate, enabling the nanostructure to be probed locally and in situ, and for the potential profile to be mapping with high spatial resolution. The extended temperature range (the instrument currently operates only down to 130 K) will allow feedback on the device structure in real time so that exotic quantum states can be defined at temperatures where transport measurements are made.
非技术性解释本研究项目旨在了解一种新发现的制造尺寸接近原子尺度的电路的方法背后的基本工作原理。 目前的计算机技术是基于硅晶体管,这是接近他们的最小可能的大小。 氧化物纳米电子学为制造信息技术所需的晶体管和其他电路元件提供了一种新方法,但许多基本性质仍然没有得到很好的理解。 发展这种理解的一种方法是使用一种称为原子力显微镜的技术,在这种技术中,一个小的针状探针在表面上扫描以测量形状,并通过向探针施加电压来改变性质。 该研究项目将使用这种仪器的扩展功能,以允许在比以前可能的温度低得多的温度下测量性能。 这种控制将有助于揭示写入和擦除纳米晶体管和其他器件的一些基本机制。 该项目将为参与该项目的研究生提供形成经验。 低温图像很可能会创造出这些纳米结构的吸引人的视觉表现,这将吸引年轻的,易受影响的学生选择他们未来的学术轨迹。技术支持PI发明了一种在两种绝缘体(LaAlO3和SrTiO3)之间的界面上书写和修饰导电纳米结构的新方法。 该项目将扩展真空原子力显微镜(AFM)的工作范围,使氧化物纳米结构可以冷却到4 K,同时通过导电AFM针尖进行探测。 在低温下,从施主位点的载流子的热激活被抑制,揭示了由AFM写入过程产生的潜在的。 尖端将充当局部门,使纳米结构能够被局部和原位探测,并且用于以高空间分辨率绘制电势分布。 扩展的温度范围(该仪器目前仅在130 K以下运行)将允许在真实的时间内对器件结构进行反馈,以便在进行传输测量的温度下定义奇异量子态。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeremy Levy其他文献

The American Society of Breast Surgeons classification system for oncoplastic breast conserving surgery independently predicts the risk of delayed wound healing
美国乳腺外科医生学会的保乳整形手术分类系统独立预测延迟伤口愈合的风险
  • DOI:
    10.1016/j.ejso.2023.107032
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Nadia Maggi;Daniel Rais;Rahel Nussbaumer;Jeremy Levy;Fabienne D. Schwab;Christian Kurzeder;Martin Heidinger;Walter P. Weber
  • 通讯作者:
    Walter P. Weber
Classification of 12-lead ECGs Using Digital Biomarkers and Representation Learning
使用数字生物标记和表征学习对 12 导联心电图进行分类
  • DOI:
    10.22489/cinc.2020.202
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Assaraf;Jeremy Levy;Janmajay Singh;Armand Chocron;J. Behar
  • 通讯作者:
    J. Behar
Topological Solitons in Square-root Graphene Nanoribbons Controlled by Electric Fields
电场控制的平方根石墨烯纳米带中的拓扑孤子
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haiyue Huang;M. Sarker;P. Zahl;C. S. Hellberg;Jeremy Levy;Ioannis Petrides;A. Sinitskii;Prineha Narang Division of Physical Sciences;College of Letters;Science;U. California;Los Angeles;California;USA. Department of Chemistry;U. Nebraska;Lincoln;Nebraska.;Usa Center for Functional Nanomaterials;Brookhaven National Laboratory;Upton;New York.;U. U. N. R. Laboratory;Washington;D. Columbia;USA. Department of physics;Astronomy;U. Pittsburgh;Pittsburgh;Pennsylvania;U. D. O. Electrical;Computer Engineering;Usa
  • 通讯作者:
    Usa
PhysioZoo ECG: Digital electrocardiography biomarkers to assess cardiac conduction
PhysioZoo ECG:评估心脏传导的数字心电图生物标志物
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Gendelman;Shany Biton;Raphaël Derman;Eran Zvuloni;Jeremy Levy;Snir Lugassy;Alexandra Alexandrovich;J. Behar
  • 通讯作者:
    J. Behar
Generalization in medical AI: a perspective on developing scalable models
医疗人工智能的泛化:开发可扩展模型的视角
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joachim A. Behar;Jeremy Levy;L. Celi
  • 通讯作者:
    L. Celi

Jeremy Levy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeremy Levy', 18)}}的其他基金

Stereoscopic Insight into Dilute Superconductivity of Perovskite Semiconductors
钙钛矿半导体稀超导性的立体洞察
  • 批准号:
    2225888
  • 财政年份:
    2022
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Simulation of Multi-Component Fermionic Quantum Matter Using Oxide Nanoelectronics
使用氧化物纳米电子学模拟多组分费米子量子物质
  • 批准号:
    1913034
  • 财政年份:
    2019
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Spatially Resolved Probes of Magnetism at Oxide Interfaces
NSF/DMR-BSF:氧化物界面磁性空间分辨探针
  • 批准号:
    1609519
  • 财政年份:
    2016
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Single-Electron Mediated Charge, Spin and Lattice Interactions in Oxide Nanostructures
氧化物纳米结构中单电子介导的电荷、自旋和晶格相互作用
  • 批准号:
    1104191
  • 财政年份:
    2011
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
NEB: Scalable Sensing, Storage and Computation with a Rewritable Oxide Nanoelectronics Platform
NEB:使用可重写氧化物纳米电子平台进行可扩展传感、存储和计算
  • 批准号:
    1124131
  • 财政年份:
    2011
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
GOALI: GHz-THz Dynamics of Nanostructured Ferroelectric Thin Films
GOALI:纳米结构铁电薄膜的 GHz-THz 动力学
  • 批准号:
    0704022
  • 财政年份:
    2007
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Materials World Network: Engineering the Spintronic Properties of Semiconductor Quantum Dots
材料世界网络:设计半导体量子点的自旋电子特性
  • 批准号:
    0602846
  • 财政年份:
    2006
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: FRG: Local Dynamic Origins of Relaxor Ferroelectricity
合作研究:FRG:弛豫铁电的局部动态起源
  • 批准号:
    0333192
  • 财政年份:
    2003
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Development of a Cryogenic Femtosecond Aptureless Near-Field Scanning Optical Microscope for Nanostructure Research
开发用于纳米结构研究的低温飞秒无孔近场扫描光学显微镜
  • 批准号:
    9802784
  • 财政年份:
    1998
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
CAREER: Atomic-Scale Optical Microscopy of Ferroelectric, Quantum Paraelectric and Ferromagnetic Films
职业:铁电、量子顺电和铁磁薄膜的原子尺度光学显微镜
  • 批准号:
    9701725
  • 财政年份:
    1997
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Optical creation and manipulation of Josephson junctions
约瑟夫森结的光学创建和操作
  • 批准号:
    545821-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Optical creation and manipulation of Josephson junctions
约瑟夫森结的光学创建和操作
  • 批准号:
    545821-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Optical creation and manipulation of Josephson junctions
约瑟夫森结的光学创建和操作
  • 批准号:
    545821-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Creation of topological phases and simulation of electronic states using atom manipulation technique
使用原子操纵技术创建拓扑相并模拟电子态
  • 批准号:
    19K22135
  • 财政年份:
    2019
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Creation of Novel Technology for Manipulation of Self-Other Recognition Built on Robotics and Haptics
创建基于机器人和触觉的操纵自我他人识别的新技术
  • 批准号:
    19H04187
  • 财政年份:
    2019
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of plant growth through the creation of freehand manipulation of hormone responses
通过徒手操纵激素反应来分析植物生长
  • 批准号:
    17KT0017
  • 财政年份:
    2017
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of anterior-posterior polarity creation mechanism of migrating cells using artificial cell manipulation
利用人工细胞操作阐明迁移细胞的前后极性产生机制
  • 批准号:
    17KT0110
  • 财政年份:
    2017
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation, Detection, and Manipulation of Isolated Magnetic Skyrmions in Nanowires for Magnetic Storage Applications
用于磁存储应用的纳米线中孤立的磁性斯格明子的创建、检测和操作
  • 批准号:
    1609585
  • 财政年份:
    2016
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
CAREER: Direct Manipulation of Numerical Optimization for Structured Geometry Creation
职业:直接操作数值优化以创建结构化几何
  • 批准号:
    1453018
  • 财政年份:
    2015
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Elucidation and manipulation of regeneration potential of cortical neurons by artificial scaffold creation
通过人工支架的创建来阐明和操纵皮质神经元的再生潜力
  • 批准号:
    15H03019
  • 财政年份:
    2015
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了