CAREER: Direct Manipulation of Numerical Optimization for Structured Geometry Creation
职业:直接操作数值优化以创建结构化几何
基本信息
- 批准号:1453018
- 负责人:
- 金额:$ 54.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The physical world surrounds us with geometric and spatial information. A large variety of sensors and scanning equipment can readily turn this physical data into unstructured digital geometry, such as point clouds and triangle meshes. However, next generation digital geometry processing applications (say, for computer-aided design or for medical image analysis) require structured data in which an object is organized into meaningful parts and relationships. People have no trouble perceiving the structure of a sketch, MRI, or scanned car miniature, easily identifying which organs or machine parts are present and the approximate location of each. Whether due to our learned expertise or innate skill, such human perceptual abilities are extremely challenging to automate; resolving ambiguities in the input (e.g., a dark region in an MRI that could be a malignant tumor or an innocuous shadow) typically necessitates human involvement. On the other hand, we struggle with tedious low-level geometric tasks such as precisely delineating a bone fracture or the surface of a car door. While nonlinear optimization algorithms excel at improving approximate input, they are often too slow to integrate into interactive applications. Thus, a problem arises in situations where new user input is provided continuously; if an in-progress nonlinear optimization is repeatedly canceled and restarted no solution will ever be found, but if allowed to continue it will compute an outdated solution. The PI's objective in the current research is to resolve this fundamental conflict between interactivity and nonlinear optimization, and to explore minimal interactive approaches for creating structured geometry in medical and design applications. His approach merges direct manipulation interfaces, which are powerful and easily learned, with nonlinear optimization, which is capable of solving precise geometric problems given approximate input from a human. The PI will synthesize techniques from human-computer interaction, perceptual psychology, and numerical optimization to exploit the fact that people typically interact with computers in a low-dimensional manner (e.g., by moving a mouse), which allows one to predict both human input and whether parallel optimization processes will converge to the same solution. He will evaluate these approaches with interfaces for creating high-quality, structured 3D models from noisy and inconsistent partial data as is commonly found in scans of physical models for computer-aided design and anatomical scans for medical imaging. Project outcomes will vastly increase the computational resources available to numerical optimization in interactive systems while greatly reducing expensive operator time, and will also help unify physical and digital design. The PI will seek to widely disseminate project outcomes, by open-sourcing broadly-reusable algorithms and by technology transfer to industry. He will also engage in a variety of educational and outreach activities, including a "reverse science fair" at a local high school during which guest speakers deliver accessible introductions to state-of-the-art research and students practice science journalism.
物理世界围绕着我们的几何和空间信息。 各种各样的传感器和扫描设备可以很容易地将这些物理数据转化为非结构化的数字几何形状,例如点云和三角形网格。 然而,下一代数字几何处理应用(例如,用于计算机辅助设计或用于医学图像分析)需要结构化数据,其中对象被组织成有意义的部分和关系。 人们可以毫不费力地感知草图、核磁共振成像或扫描的汽车模型的结构,很容易识别出存在哪些器官或机器部件以及每个器官或部件的大致位置。 无论是由于我们学到的专业知识还是天生的技能,这种人类感知能力对于自动化来说都是极具挑战性的;解决输入中的歧义(例如,可能是恶性肿瘤或无害阴影的MRI中的暗区)通常需要人的参与。 另一方面,我们要努力完成繁琐的低级几何任务,例如精确描绘骨折或车门表面。 虽然非线性优化算法擅长改进近似输入,但它们通常太慢而无法集成到交互式应用程序中。 因此,在不断提供新用户输入的情况下会出现问题;如果正在进行的非线性优化被反复取消并重新启动,则永远不会找到解,但如果允许继续,则会计算过时的解。PI在当前研究中的目标是解决交互性和非线性优化之间的根本冲突,并探索在医疗和设计应用中创建结构化几何形状的最小交互方法。 他的方法将功能强大且易于学习的直接操作界面与非线性优化相结合,后者能够解决人类近似输入的精确几何问题。 PI将综合人机交互、感知心理学和数值优化的技术,以利用人们通常以低维方式与计算机交互的事实(例如,通过移动鼠标),这允许预测人的输入以及并行优化过程是否将收敛到相同的解。 他将评估这些方法的接口,用于从噪声和不一致的部分数据创建高质量的结构化3D模型,这在计算机辅助设计的物理模型扫描和医学成像的解剖扫描中很常见。 项目成果将大大增加可用于交互系统数值优化的计算资源,同时大大减少昂贵的操作时间,并有助于统一物理和数字设计。 PI将寻求通过开源广泛可重复使用的算法和向行业转让技术来广泛传播项目成果。 他还将参与各种教育和推广活动,包括在当地一所高中举办的“反向科学博览会”,在此期间,特邀演讲者将向学生介绍最先进的研究,学生将练习科学新闻。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yotam Gingold其他文献
Yotam Gingold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yotam Gingold', 18)}}的其他基金
EAGER: Improving the Quality and Editability of 2D and 3D Shapes via Crowdsourcing and Self-Crowdsourcing
EAGER:通过众包和自我众包提高 2D 和 3D 形状的质量和可编辑性
- 批准号:
1451198 - 财政年份:2014
- 资助金额:
$ 54.97万 - 项目类别:
Standard Grant
相似国自然基金
基于 Direct RNA sequencing 的 RNA 甲基化介导贻贝天然免疫调控的表观遗传机制研究
- 批准号:LR22D060002
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
新型滤波器综合技术-直接综合技术(Direct synthesis Technique)的研究及应用
- 批准号:61671111
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Direct Manipulation in Cell Nucleus
细胞核的直接操作
- 批准号:
22H01441 - 财政年份:2022
- 资助金额:
$ 54.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Direct manipulation of in vivo prefrontal cortex dopamine in mice performing a working memory task
直接操纵执行工作记忆任务的小鼠体内前额皮质多巴胺
- 批准号:
554486-2020 - 财政年份:2020
- 资助金额:
$ 54.97万 - 项目类别:
University Undergraduate Student Research Awards
Direct manipulation of memory and learning by inducing long-term potentiation using photoactivatable CaMKII
使用可光激活的 CaMKII 诱导长时程增强,直接操纵记忆和学习
- 批准号:
18K14826 - 财政年份:2018
- 资助金额:
$ 54.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Direct observation of antiferromagnetic spin in real space and momentum space and its electrical manipulation
实空间和动量空间反铁磁自旋的直接观察及其电操纵
- 批准号:
17K17801 - 财政年份:2017
- 资助金额:
$ 54.97万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
CAREER: Direct Manipulation Programming Systems
职业:直接操作编程系统
- 批准号:
1651794 - 财政年份:2017
- 资助金额:
$ 54.97万 - 项目类别:
Continuing Grant
CHS: Small: Direct physical grasping, manipulation, and tooling of simulated objects
CHS:小型:模拟对象的直接物理抓取、操作和工具
- 批准号:
1420159 - 财政年份:2014
- 资助金额:
$ 54.97万 - 项目类别:
Standard Grant
A Direct Manipulation Interface for Authoring Animations of Science Experiments via Motion Beautification
通过运动美化创作科学实验动画的直接操作界面
- 批准号:
25560115 - 财政年份:2013
- 资助金额:
$ 54.97万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Direct manipulation of the intracellular stress distribution for controlling cell division
直接操纵细胞内应力分布以控制细胞分裂
- 批准号:
24650257 - 财政年份:2012
- 资助金额:
$ 54.97万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
SBIR Phase I: Direct 3D Manipulation for Computer Aided Design
SBIR 第一阶段:计算机辅助设计的直接 3D 操作
- 批准号:
1215109 - 财政年份:2012
- 资助金额:
$ 54.97万 - 项目类别:
Standard Grant
Six-Axis Visual Sensing and Visual Servo Control Rendering Direct Metrology for Manipulation of Multiple Micro Objects
六轴视觉传感和视觉伺服控制渲染用于操纵多个微型物体的直接计量
- 批准号:
1067962 - 财政年份:2011
- 资助金额:
$ 54.97万 - 项目类别:
Standard Grant