Selective Breeding of a Genome-Scale Metabolic Network

基因组规模代谢网络的选择性育种

基本信息

  • 批准号:
    0951076
  • 负责人:
  • 金额:
    $ 53.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-03-01 至 2014-02-28
  • 项目状态:
    已结题

项目摘要

Intellectual Merit:The metabolic pathways of any particular cell form a single interconnected network. The Investigator's goal is to understand how this network evolves in response to the changing needs of the organism. He and his team have developed a model system that streamlines laboratory investigations of adaptive genome evolution. They expressed the lux operon of Photorhabdus luminescens, which encodes an anabolic pathway producing visible light, in Acinetobacter baylyi ADP1, which naturally exchanges and recombines its chromosomal DNA as it grows. The model system has an active natural recombination system that enables an efficient microbial breeding strategy and at the same time, permits the selection of gene-based metabolic traits that contribute to the production of visible light. The Investigator proposes to direct the evolution of strains that produce even more light, and to investigate the most hypermorphic strain by genome sequencing, microarray analysis and biochemical studies of the evolved proteins. This work will show how evolutionary tradeoffs can optimize the flux through a model anabolic pathway. These lessons could be applied to increase the biosynthetic yields of biofuels, materials, and other economically valuable compounds.Broader Impact:Many prospective molecular biologists lack the financial resources to conduct research. The cost of the basic equipment necessary to transform Escherichia coli (centrifuge, 80° C freezer) imposes a formidable entry barrier. A. baylyi is naturally competent, so it can be transformed without expensive hardware. The Investigator's team has created a novel expression vector for this organism, and has written software that shows users how to combine DNA fragments in overlap PCR reactions. A determined high school student or hobbyist could use these tools to create and express novel genes in minimally equipped home laboratories. This study will inspire novice scientists to design and conduct their own experiments, and eventually to seek formal training.
智力优势:任何特定细胞的代谢途径都形成了一个相互连接的网络。研究者的目标是了解这个网络如何响应生物体不断变化的需求而演变。他和他的团队开发了一个模型系统,简化了适应性基因组进化的实验室研究。 他们在贝氏不动杆菌ADP 1中表达了发光光杆菌的lux操纵子,该操纵子编码产生可见光的合成代谢途径,该不动杆菌在生长时自然交换和重组其染色体DNA。 该模型系统具有主动的自然重组系统,该系统能够实现有效的微生物育种策略,同时允许选择有助于产生可见光的基于基因的代谢性状。 研究人员建议指导产生更多光的菌株的进化,并通过基因组测序,微阵列分析和进化蛋白质的生化研究来研究最高形态的菌株。这项工作将显示如何通过一个模型合成代谢途径的进化权衡可以优化流量。 这些经验可以应用于提高生物燃料、材料和其他有经济价值的化合物的生物合成产量。更广泛的影响:许多未来的分子生物学家缺乏进行研究的财政资源。转化大肠杆菌所需的基本设备(离心机、80° C冰箱)的成本造成了巨大的进入壁垒。A. Baylyi天生就有能力,所以不用昂贵的硬件就可以改造。研究人员的团队已经为这种生物创造了一种新的表达载体,并编写了软件,向用户展示如何在重叠PCR反应中结合联合收割机DNA片段。一个坚定的高中生或业余爱好者可以使用这些工具在设备最少的家庭实验室中创造和表达新的基因。这项研究将激励新手科学家设计和进行自己的实验,并最终寻求正式的培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ichiro Matsumura其他文献

DNA shuffling brigthens prospects for GFP
DNA 改组为绿色荧光蛋白带来了更光明的前景
  • DOI:
    10.1038/nbt0396-366
  • 发表时间:
    1996-03-01
  • 期刊:
  • 影响因子:
    41.700
  • 作者:
    Ichiro Matsumura;Andrew D. Ellington
  • 通讯作者:
    Andrew D. Ellington

Ichiro Matsumura的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ichiro Matsumura', 18)}}的其他基金

Collaborative Research: Plug and Play Photosynthesis for RuBisCO Independent Fuels
合作研究:RuBisCO 独立燃料的即插即用光合作用
  • 批准号:
    1359575
  • 财政年份:
    2014
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Standard Grant
Synthetic Entomology
合成昆虫学
  • 批准号:
    1413062
  • 财政年份:
    2014
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Plug and Play Photosynthesis for RuBisCO Independent Fuels
合作研究:RuBisCO 独立燃料的即插即用光合作用
  • 批准号:
    1104988
  • 财政年份:
    2011
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Standard Grant
In Vitro Evolution to Diversify an Enzyme's Specificity
体外进化使酶的特异性多样化
  • 批准号:
    0109668
  • 财政年份:
    2001
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Continuing Grant
NSF/Alfred P. Sloan Foundation Postdoctoral Research Fellowship in Molecular Evolution for FY 1997
NSF/Alfred P. Sloan 基金会 1997 财年分子进化博士后研究奖学金
  • 批准号:
    9750002
  • 财政年份:
    1997
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Fellowship Award

相似海外基金

TRTech-PGR: Unlocking Bread Wheat Genome Diversity: Foundational Genome Sequences and Resources to Advance Breeding and Biotechnological Improvement of a Global Food Security Crop
TRTech-PGR:解锁面包小麦基因组多样性:促进全球粮食安全作物育种和生物技术改进的基础基因组序列和资源
  • 批准号:
    2322957
  • 财政年份:
    2024
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Standard Grant
Elucidation of the mechanism of overdominance in rice and development of a novel breeding method utilizing genome editing
阐明水稻过度优势机制并开发利用基因组编辑的新型育种方法
  • 批准号:
    23KJ0326
  • 财政年份:
    2023
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Establishment of Breeding Novel Salt-Tolerant Rice by Controlling Maternal Cytosolic Genome
通过控制母体胞质基因组建立新型耐盐水稻育种
  • 批准号:
    23KF0033
  • 财政年份:
    2023
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Basic research on genetic analysis of the genus Chrysanthemum for genome breeding
菊花基因组育种遗传分析基础研究
  • 批准号:
    20K22583
  • 财政年份:
    2020
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Establishment of the basis for plant mitochondrial genome breeding
植物线粒体基因组育种基础的建立
  • 批准号:
    20H05680
  • 财政年份:
    2020
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Development of breeding materials for reducing aluminum content in tea leaves by genome-wide association analysis
通过全基因组关联分析开发降低茶叶铝含量的育种材料
  • 批准号:
    20H02886
  • 财政年份:
    2020
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Establishment of the basis for plant mitochondrial genome breeding
植物线粒体基因组育种基础的建立
  • 批准号:
    20H00417
  • 财政年份:
    2020
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Breeding of filamentous fungi producing citric acid with high efficiencies by the genome editing system
利用基因组编辑系统选育高效产柠檬酸的丝状真菌
  • 批准号:
    20H02906
  • 财政年份:
    2020
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of cellular environment-sensing mechanism involving upstream ORFs and its application to genome breeding
上游ORF的细胞环境感知机制的阐明及其在基因组育种中的应用
  • 批准号:
    19H02917
  • 财政年份:
    2019
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A novel genome engineering technology to create a huge number of genomic diversity by splitting chromosomes and applicataion to breeding in yeast
一种通过染色体分裂创造大量基因组多样性的新型基因组工程技术及其在酵母育种中的应用
  • 批准号:
    19H02878
  • 财政年份:
    2019
  • 资助金额:
    $ 53.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了