CAREER: Autotuning Foundations for Exascale Computing
职业:百亿亿次计算的自动调整基础
基本信息
- 批准号:0953100
- 负责人:
- 金额:$ 46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-15 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research is to discover novel foundational principlesfor developing highly-efficient and reliable software that can achievesustainable performance on the exascale computing platforms expected by2020. Such platforms will deliver three orders of magnitude beyondtoday?s systems; harnessing this raw computational power couldrevolutionize our modeling and understanding of critical phenomena inareas like climate modeling, energy, medicine, sustainability,cosmology, engineering design, and massive-scale data analytics. Yet,developing software for exascale systems is a tremendous challengebecause the hardware is complex and it is not believed that the mostproductive ?high-level? software development environments (e.g.,programming languages and libraries) will be able to effectively exploitthese exascale systems.The investigator aims to address this challenge by using automatedtuning (autotuning) to eliminate the low performance traditionallyassociated with high-level programming models. This research (a)develops new model-driven frameworks for tuning parallel algorithms anddata structures, going beyond existing techniques that focus onlow-level code tuning; and (b) studies autotuning for programs expressedin high-level programming models, with the aim of eliminating theperformance gap. Concomitant with this research, the PI will create anew practicum course: The HPC Garage. The HPC Garage physicallyco-locates interdisciplinary teams in a social collaborative lab space;the teams engage in a year-long competition, called the XD Prize, todevelop highly scalable algorithms and software for NSF TeraGrid?snext-generation XD facilities. The HPC Garage also hosts summer internsin Georgia Tech?s Computing Research Undergraduate Intern SummerExperience (CRUISE) program, whose mission is to encourage students,especially those from underrepresented groups, to pursue graduatedegrees in computing.
这项研究的目标是发现新的基本原则,以开发高效和可靠的软件,可以在预计到2020年的exascale计算平台上保持性能。这样的平台将提供三个数量级超越今天?的系统;利用这种原始的计算能力可以彻底改变我们对气候建模、能源、医学、可持续性、宇宙学、工程设计和大规模数据分析等领域关键现象的建模和理解。然而,为exascale系统开发软件是一个巨大的挑战,因为硬件是复杂的,它不被认为是最有效的?高级别?软件开发环境(例如,研究人员的目标是通过使用自动调优(autotuning)来消除传统上与高级编程模型相关的低性能来解决这一挑战。本研究(a)开发了新的模型驱动的并行算法和数据结构调优框架,超越了现有的关注低级代码调优的技术;(B)研究了在高级编程模型中表达的程序的自动调优,目的是消除性能差距。伴随着这项研究,PI将创建新的实习课程:HPC车库。HPC Garage物理上将跨学科团队共同安置在社会协作实验室空间中;这些团队参加为期一年的比赛,称为XD奖,为NSF TeraGrid开发高度可扩展的算法和软件。下一代XD设备HPC车库还举办夏季实习格鲁吉亚理工学院?的计算研究本科实习生暑期体验(CRUISE)计划,其使命是鼓励学生,特别是那些来自代表性不足的群体,追求研究生学位的计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Vuduc其他文献
Multifidelity Memory System Simulation in SST
SST 中的多保真内存系统仿真
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Patrick Lavin;Jeffrey Young;Richard Vuduc - 通讯作者:
Richard Vuduc
Modeling the Power Variability of Core Speed Scaling on Homogeneous Multicore Systems
对同质多核系统上核心速度调节的功率变化进行建模
- DOI:
10.1155/2017/8686971 - 发表时间:
2017-10 - 期刊:
- 影响因子:0
- 作者:
Zhihui Du;Rong Ge;Victor W. Lee;Richard Vuduc;David A. Bader;Ligang He - 通讯作者:
Ligang He
Sparse Matrix-Vector Multiplication on Multicore and Accelerators
多核和加速器上的稀疏矩阵向量乘法
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Samuel Williams;Nathan Bell;Jee Whan Choi;Michael Garland;L. Oliker;Richard Vuduc - 通讯作者:
Richard Vuduc
Richard Vuduc的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Vuduc', 18)}}的其他基金
XPS: FULL: DSD: A Parallel Tensor Infrastructure (ParTI!) for Data Analysis
XPS:完整:DSD:用于数据分析的并行张量基础设施 (PartTI!)
- 批准号:
1533768 - 财政年份:2015
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
SHF: Small: How Much Execution Time, Energy, And Power Does an Algorithm Need?
SHF:小:算法需要多少执行时间、能量和功率?
- 批准号:
1422935 - 财政年份:2014
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
SHF: Small: Locating and Explaining Faults in Concurrent Software
SHF:小:并发软件中的故障定位和解释
- 批准号:
1116210 - 财政年份:2011
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
THOR: A New Programming Model for Data Analysis and Mining
THOR:数据分析和挖掘的新编程模型
- 批准号:
0833136 - 财政年份:2008
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
相似海外基金
Autonomous Discovery of Performance Tuning Insights Using Autotuning
使用自动调优自主发现性能调优见解
- 批准号:
23K16890 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: GPU Performance Portability for Volunteer Computing through Heterogeneity-aware Autotuning
职业:通过异构感知自动调整实现志愿计算的 GPU 性能可移植性
- 批准号:
2144384 - 财政年份:2022
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
SHF: Medium: Scalable Holistic Autotuning for Software Analytics
SHF:中:用于软件分析的可扩展整体自动调整
- 批准号:
1703487 - 财政年份:2017
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
Online Autotuning for Interactive Raytracing
用于交互式光线追踪的在线自动调整
- 批准号:
299215159 - 财政年份:2016
- 资助金额:
$ 46万 - 项目类别:
Research Grants
SI2-SSE: BONSAI: An Open Software Infrastructure for Parallel Autotuning of Computational Kernels
SI2-SSE:BONSAI:用于计算内核并行自动调整的开放软件基础设施
- 批准号:
1642441 - 财政年份:2016
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Research on Mathematical Methods and Development of Libraries for Combined and Hierarchical Autotuning
组合递阶自整定数学方法及库开发研究
- 批准号:
15H02708 - 财政年份:2015
- 资助金额:
$ 46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SHF: Small: Empirical Autotuning of Parallel Computation for Scalable Hybrid Systems
SHF:小型:可扩展混合系统并行计算的经验自动调整
- 批准号:
1527706 - 财政年份:2015
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Research on Software Autotuning Mechanism that evolves to unknown computing environments
向未知计算环境演化的软件自动调优机制研究
- 批准号:
15K12033 - 财政年份:2015
- 资助金额:
$ 46万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Runtime autotuning of tile LU factorization for CPU/GPU hybrid environments
针对 CPU/GPU 混合环境的切片 LU 分解的运行时自动调整
- 批准号:
26400197 - 财政年份:2014
- 资助金额:
$ 46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Autotuning for multicore and manycore architectures: an enhanced feedback-driven approach
职业:多核和众核架构的自动调整:增强的反馈驱动方法
- 批准号:
1253292 - 财政年份:2013
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant