CAREER: Autotuning for multicore and manycore architectures: an enhanced feedback-driven approach

职业:多核和众核架构的自动调整:增强的反馈驱动方法

基本信息

  • 批准号:
    1253292
  • 负责人:
  • 金额:
    $ 48.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-02-01 至 2020-01-31
  • 项目状态:
    已结题

项目摘要

Achieving a high fraction of peak performance on complex architectures has been a perennial challenge for application developers. The emergence of multicore processors and accelerators has greatly exacerbated this problem. With an increasing number of cores per socket, deep hierarchies of shared and distributed caches, and exascale computing on the horizon, multicore platforms pose unprecedented challenges for software development and application tuning. This research confronts the challenge of multicore and manycore software development by improving automatic performance tuning through improved feedback diagnostics. Autotuning efficiency is achieved through enhanced knowledge of the problem domain, program features and architectural characteristics. To this end, we are developing a set of tools that allow specification, collection and synthesis of tuning related information. This rich set of information is then exploited through novel machine learning models to deliver scalable, portable and sustainable performance on diverse architectures. In line with this research, we have established, SISTEM, a structured interdisciplinary program for undergraduates that brings together faculty and students from different STEM disciplines to explore cross-cutting research problems in which computational thinking, modeling and simulation play a central role. The techniques developed as past of this research will have a direct economic impact through saved energy and computation cycles on high-end systems. The improved efficiency of applications will allow researchers to execute large-scale simulations that will enable modeling of complex phenomenon in a broad range of disciplines including medicine, high-energy physics, climate modeling and nanotechnology.
在复杂的体系结构上实现高比例的峰值性能一直是应用程序开发人员面临的长期挑战。多核处理器和加速器的出现大大加剧了这一问题。随着每个插槽的内核数量不断增加,共享和分布式缓存的深层层次结构,以及即将出现的亿级计算,多核平台对软件开发和应用程序调优提出了前所未有的挑战。这项研究通过改进反馈诊断来改进自动性能调整,从而面对多核和多核软件开发的挑战。自动调整效率是通过增强对问题域、程序功能和体系结构特征的了解来实现的。为此,我们正在开发一套工具,允许规范、收集和综合与调整相关的信息。然后,通过新的机器学习模型利用这些丰富的信息集,在不同的架构上提供可扩展、可移植和可持续的性能。根据这项研究,我们建立了一个面向本科生的结构化跨学科项目--SISTEM,它将来自不同STEM学科的教职员工和学生聚集在一起,探索以计算思维、建模和模拟为核心的跨学科研究问题。本研究过去开发的技术将通过在高端系统上节省能源和计算周期而产生直接的经济影响。应用程序效率的提高将使研究人员能够执行大规模模拟,从而能够在包括医学、高能物理、气候建模和纳米技术在内的广泛学科中对复杂现象进行建模。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Energy-Efficient GPU Graph Processing with On-Demand Page Migration
具有按需页面迁移功能的节能 GPU 图形处理
Accelerating HotSpots in Deep Neural Networks on a CAPI-Based FPGA
Evaluating the impact of data layout and placement on the energy efficiency of heterogeneous applications
评估数据布局和放置对异构应用程序能效的影响
Automatically Selecting Profitable Thread Block Sizes for Accelerated Kernels
自动为加速内核选择有利可图的线程块大小
A Machine Learning Approach to Automatic Creation of Architecture-Sensitive Performance Heuristics
自动创建架构敏感的性能启发式的机器学习方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Apan Qasem其他文献

Uncovering input-sensitive energy bottlenecks in oversubscribed GPU workloads
发现超额订阅 GPU 工作负载中的输入敏感能源瓶颈
  • DOI:
    10.1016/j.suscom.2022.100654
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. D. Girolamo;Jacob M. Hope;Apan Qasem
  • 通讯作者:
    Apan Qasem
Characterizing data organization effects on heterogeneous memory architectures
表征数据组织对异构内存架构的影响
Architectural Considerations for Compiler-guided Unroll-and-Jam of CUDA Kernels
编译器引导的 CUDA 内核展开和堵塞的架构注意事项
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Apan Qasem
  • 通讯作者:
    Apan Qasem
Intelligent Data Placement on Discrete GPU Nodes with Unified Memory
具有统一内存的离散 GPU 节点上的智能数据放置

Apan Qasem的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Apan Qasem', 18)}}的其他基金

CyberTraining: CIC: Widening the CI Workforce On-ramp by Exposing Undergraduates to Heterogeneous Computing
网络培训:CIC:通过让本科生接触异构计算来拓宽 CI 劳动力入口
  • 批准号:
    1829644
  • 财政年份:
    2018
  • 资助金额:
    $ 48.95万
  • 项目类别:
    Standard Grant
Preparing Computer Science Students for the Multicore Era: Teaching Parallel Computing in the Undergraduate Curriculum Early and Often
让计算机科学专业的学生为多核时代做好准备:在本科课程中尽早并经常教授并行计算
  • 批准号:
    1141022
  • 财政年份:
    2012
  • 资助金额:
    $ 48.95万
  • 项目类别:
    Standard Grant

相似海外基金

Autonomous Discovery of Performance Tuning Insights Using Autotuning
使用自动调优自主发现性能调优见解
  • 批准号:
    23K16890
  • 财政年份:
    2023
  • 资助金额:
    $ 48.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: GPU Performance Portability for Volunteer Computing through Heterogeneity-aware Autotuning
职业:通过异构感知自动调整实现志愿计算的 GPU 性能可移植性
  • 批准号:
    2144384
  • 财政年份:
    2022
  • 资助金额:
    $ 48.95万
  • 项目类别:
    Continuing Grant
SHF: Medium: Scalable Holistic Autotuning for Software Analytics
SHF:中:用于软件分析的可扩展整体自动调整
  • 批准号:
    1703487
  • 财政年份:
    2017
  • 资助金额:
    $ 48.95万
  • 项目类别:
    Continuing Grant
Online Autotuning for Interactive Raytracing
用于交互式光线追踪的在线自动调整
  • 批准号:
    299215159
  • 财政年份:
    2016
  • 资助金额:
    $ 48.95万
  • 项目类别:
    Research Grants
SI2-SSE: BONSAI: An Open Software Infrastructure for Parallel Autotuning of Computational Kernels
SI2-SSE:BONSAI:用于计算内核并行自动调整的开放软件基础设施
  • 批准号:
    1642441
  • 财政年份:
    2016
  • 资助金额:
    $ 48.95万
  • 项目类别:
    Standard Grant
Research on Mathematical Methods and Development of Libraries for Combined and Hierarchical Autotuning
组合递阶自整定数学方法及库开发研究
  • 批准号:
    15H02708
  • 财政年份:
    2015
  • 资助金额:
    $ 48.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SHF: Small: Empirical Autotuning of Parallel Computation for Scalable Hybrid Systems
SHF:小型:可扩展混合系统并行计算的经验自动调整
  • 批准号:
    1527706
  • 财政年份:
    2015
  • 资助金额:
    $ 48.95万
  • 项目类别:
    Standard Grant
Research on Software Autotuning Mechanism that evolves to unknown computing environments
向未知计算环境演化的软件自动调优机制研究
  • 批准号:
    15K12033
  • 财政年份:
    2015
  • 资助金额:
    $ 48.95万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Runtime autotuning of tile LU factorization for CPU/GPU hybrid environments
针对 CPU/GPU 混合环境的切片 LU 分解的运行时自动调整
  • 批准号:
    26400197
  • 财政年份:
    2014
  • 资助金额:
    $ 48.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Autotuning Foundations for Exascale Computing
职业:百亿亿次计算的自动调整基础
  • 批准号:
    0953100
  • 财政年份:
    2010
  • 资助金额:
    $ 48.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了