CAREER: Computational modeling and analysis of gene expression patterns from microscopy image data

职业:基于显微镜图像数据的基因表达模式的计算建模和分析

基本信息

  • 批准号:
    0953184
  • 负责人:
  • 金额:
    $ 82.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

Duke University is awarded a grant from the Faculty Early Career Development program (CAREER) to develop an integrated framework for the analysis and interpretation of biological image data. Images have been long used in molecular and developmental biology as a means to document the outcome of experiments, but are increasingly seen as quantitative data and not just qualitative descriptions. With recent advances in microscopy technology, as well as means to visualize biological molecules, the growing amount of available data has turned images into a new data type for computational biology with new and exciting challenges and possibilities. In particular, microscopy allows for measuring gene expression patterns at high resolution and in living organisms. Algorithms to extract, represent, and compare spatial and temporal expression patterns from images are still in early stages, and are often tailored to a particular scenario. The key contribution of this project lies in a principled probabilistic framework which utilizes top-down generative strategies to extract samples from images, model gene expression patterns from microscopy data, and integrate image expression data with other genomic data to understand gene regulation. Close collaborations with biologists working on animal and plant model systems will ensure that the developed methods are widely applicable, and will allow for the targeted validation of specific model predictions. The interdiscplinary nature of this proposal reaches across both research and education. In concert with the research program, a graduate course in computational biology will be expanded to include case study modules combining methodological background with hands-on examples to analyze primary research data. Topics will include genome annotation, gene regulation, and image analysis. To increase the impact of this effort, the PI will closely collaborate with the ongoing NSF iPlant initiative and teach at workshops for educators at the high school, undergraduate, and graduate level. The PI will also continue to participate in development and teaching of systems biology curricula for undergraduates and graduates spearheaded by the Duke Center for Systems Biology. Ongoing international efforts by the Center include the development of a platform to allow for an open sharing of teaching resources.
杜克大学获得了教师早期职业发展计划(CAREER)的资助,以开发用于分析和解释生物图像数据的综合框架。图像长期以来一直被用于分子和发育生物学,作为记录实验结果的一种手段,但越来越多地被视为定量数据,而不仅仅是定性描述。随着显微技术的最新进展,以及可视化生物分子的手段,越来越多的可用数据已经将图像变成了计算生物学的新数据类型,带来了新的和令人兴奋的挑战和可能性。特别是,显微镜允许在高分辨率和活生物体中测量基因表达模式。从图像中提取,表示和比较空间和时间表达模式的算法仍处于早期阶段,并且通常针对特定场景进行定制。该项目的主要贡献在于一个原则性的概率框架,该框架利用自上而下的生成策略从图像中提取样本,从显微镜数据中建模基因表达模式,并将图像表达数据与其他基因组数据整合以了解基因调控。与研究动物和植物模型系统的生物学家密切合作,将确保所开发的方法广泛适用,并将允许对特定模型预测进行有针对性的验证。这项建议的跨学科性质涉及研究和教育。与研究计划相一致,计算生物学的研究生课程将扩展到包括案例研究模块,将方法背景与实践示例相结合,以分析主要研究数据。主题将包括基因组注释,基因调控和图像分析。为了提高这一努力的影响力,PI将与正在进行的NSF iPlant计划密切合作,并在为高中、本科和研究生水平的教育工作者举办的研讨会上授课。PI还将继续参与由杜克系统生物学中心牵头的本科生和研究生系统生物学课程的开发和教学。该中心正在进行的国际努力包括开发一个平台,允许开放共享教学资源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Uwe Ohler其他文献

A single-cell emArabidopsis/em root atlas reveals developmental trajectories in wild-type and cell identity mutants
单细胞拟南芥根图谱揭示了野生型和细胞身份突变体中的发育轨迹
  • DOI:
    10.1016/j.devcel.2022.01.008
  • 发表时间:
    2022-02-28
  • 期刊:
  • 影响因子:
    8.700
  • 作者:
    Rachel Shahan;Che-Wei Hsu;Trevor M. Nolan;Benjamin J. Cole;Isaiah W. Taylor;Laura Greenstreet;Stephen Zhang;Anton Afanassiev;Anna Hendrika Cornelia Vlot;Geoffrey Schiebinger;Philip N. Benfey;Uwe Ohler
  • 通讯作者:
    Uwe Ohler
Mapping the complexity of transcription control in higher eukaryotes
  • DOI:
    10.1186/gb-2010-11-4-115
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Pavel Tomancak;Uwe Ohler
  • 通讯作者:
    Uwe Ohler
Analysis of the miRNA targetome in EBV-infected B cells
  • DOI:
    10.1186/1750-9378-7-s1-o2
  • 发表时间:
    2012-04-19
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Rebecca L Skalsky;David L Corcoran;Eva Gottwein;Christopher L Frank;Markus Hafner;Jeffrey D Nusbaum;Regina Feederle;Henri-Jacques Delecluse;Micah Luftig;Thomas Tuschl;Uwe Ohler;Bryan R Cullen
  • 通讯作者:
    Bryan R Cullen
Stochastic segment models of eukaryotic promoter regions.
真核启动子区域的随机片段模型。
Regnase-1 and Roquin regulate common inflammation-related mRNAs in translation-dependent and independent manners.
Regnase-1 和 Roquin 以翻译依赖和独立的方式调节常见的炎症相关 mRNA。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    64.5
  • 作者:
    Takashi Mino;Yasuhiro Murakawa;Akira Fukao;Alexis Vandenbon;Hans-Hermann Wessels;Daisuke Ori;Takuya Uehata;Sarang Tartey;Shizuo Akira;Yutaka Suzuki;Carola G. Vinuesa;Uwe Ohler;Daron M. Standley;Markus Landthaler;Toshinobu Fujiwara;Osamu Tak
  • 通讯作者:
    Osamu Tak

Uwe Ohler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Uwe Ohler', 18)}}的其他基金

Genome-wide Exploration of miRNA-mediated Network Motifs
miRNA 介导的网络基序的全基因组探索
  • 批准号:
    0822033
  • 财政年份:
    2008
  • 资助金额:
    $ 82.15万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
  • 批准号:
    2338676
  • 财政年份:
    2024
  • 资助金额:
    $ 82.15万
  • 项目类别:
    Standard Grant
CAREER: Generative Physical Modeling for Computational Imaging Systems
职业:计算成像系统的生成物理建模
  • 批准号:
    2239687
  • 财政年份:
    2023
  • 资助金额:
    $ 82.15万
  • 项目类别:
    Continuing Grant
CAREER: Modeling and Simulating Generalized Diffusion for Computer Graphics and Computational Science
职业:计算机图形学和计算科学的广义扩散建模和仿真
  • 批准号:
    2238955
  • 财政年份:
    2023
  • 资助金额:
    $ 82.15万
  • 项目类别:
    Continuing Grant
CAREER: Computational modeling to predict subject-specific osteoarthritis risk and facilitate treatment
职业:计算模型来预测受试者特定的骨关节炎风险并促进治疗
  • 批准号:
    1944180
  • 财政年份:
    2020
  • 资助金额:
    $ 82.15万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical Modeling and Computational Tools for in vivo Astrocyte Activity
职业:体内星形胶质细胞活性的数学建模和计算工具
  • 批准号:
    1750931
  • 财政年份:
    2018
  • 资助金额:
    $ 82.15万
  • 项目类别:
    Continuing Grant
CAREER: Hybrid Experimental-Computational Modeling Framework for Transformative Research and Multidisciplinary Education in Cardiovascular Biomechanics
职业:心血管生物力学变革性研究和多学科教育的混合实验计算模型框架
  • 批准号:
    1749017
  • 财政年份:
    2018
  • 资助金额:
    $ 82.15万
  • 项目类别:
    Continuing Grant
CAREER: Bridging the gap between theoretical and experimental self-assembly through computational modeling
职业:通过计算建模弥合理论和实验自组装之间的差距
  • 批准号:
    1553166
  • 财政年份:
    2016
  • 资助金额:
    $ 82.15万
  • 项目类别:
    Continuing Grant
CAREER: Cyberinfrastructure for Realizing Predictions with Uncertainty using Computational Modeling, Data, and Bayesian Inference
职业:使用计算建模、数据和贝叶斯推理实现不确定性预测的网络基础设施
  • 批准号:
    1553287
  • 财政年份:
    2016
  • 资助金额:
    $ 82.15万
  • 项目类别:
    Standard Grant
CAREER: Mesoscale computational modeling of intracellular soft matter
职业:细胞内软物质的介观计算模型
  • 批准号:
    1552903
  • 财政年份:
    2016
  • 资助金额:
    $ 82.15万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical Modeling and Computational Studies of Human Seizure Initiation and Spread
职业:人类癫痫发作和传播的数学建模和计算研究
  • 批准号:
    1451384
  • 财政年份:
    2015
  • 资助金额:
    $ 82.15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了