CAREER: Nanoscale Ballistic Spin Transport in Semiconductors
职业:半导体中的纳米级弹道自旋输运
基本信息
- 批准号:0954486
- 负责人:
- 金额:$ 41.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-02-15 至 2016-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
****NON-TECHNICAL ABSTRACT****Along with charge, electrons have a quantum mechanical property known as ?spin.? A future technology that would be based on the spin of electrons has been named ?spintronics.? Spintronic devices are expected to be more powerful, less expensive, lighter, and consume less energy than the present electronic devices. To develop this spin-based technology, it is necessary to study movement of spin in semiconductors. This Faculty Early Career Award supports a project that will investigate nanometer-scale spin transport in semiconductors. So far, most studies have focused on spin transport at the micrometer or even larger length scales. To integrate spintronics with nanotechnology, it is crucial to understand and control nanometer-scale spin transport in semiconductors. Such transport will take place on very short timescales. This project will address this key issue using novel laser techniques that are capable of detecting events as fast as 70 femtoseconds and spin movements as small as one hundredth of nanometer. Gallium Arsenide and its nanostructures will be used to study several key aspects of the collision-free spin transport (known as ballistic spin transport). This project will advance our knowledge of spin dynamics in semiconductors, and provide comprehensive information for nanoscale spintronics. The education component of this project is well integrated with the research efforts. A new course on laser principles and techniques will be developed. The cutting edge research will involve graduate and undergraduate students, as well as high-school teachers. Outreach projects concerning what happens at very short time scales as well as projects concerning fundamental processes in materials will also be developed based on the research topics.****TECHNICAL ABSTRACT****This Faculty Early Career Award supports experimental investigations of nanoscale ballistic spin transport in semiconductor bulk, quantum wells and quantum wires. Spin transport is a fundamental process in spintronic devices. So far, most studies have focused on transport on large length scales where the transport is dominated by the drift-diffusion processes. Since the size of electronic devices on integrated circuits has been reduced to 60 nm, which is comparable to or even smaller than the mean free path of electrons, it is necessary to understand and control ballistic spin transport on the nanoscale. In this project, nanoscale spin transport in semiconductors will be studied by using ultrafast laser techniques with a temporal resolution of 70 femtoseconds and a capability of detecting movements as small as 10 picometers. Nanoscale ballistic spin transport will be directly observed and studied by tracking the position of spins in real space and real time. Several key aspects of ballistic spin transport will be studied. The proposed research will provide comprehensive information for nano-spintronics and reveal rich physics involved in ballistic spin transport. The education component of this project is well integrated with the research efforts. A new course on laser principles and techniques will be developed. The cutting edge research will involve graduate and undergraduate students, as well as high-school teachers. Outreach projects will also be developed based on the research topics.
****非技术摘要****与电荷一起,电子具有称为自旋的量子力学性质。一种基于电子自旋的未来技术被命名为自旋电子学。自旋电子器件有望比目前的电子器件更强大、更便宜、更轻、消耗更少的能量。为了发展这种基于自旋的技术,有必要研究半导体中自旋的运动。这个学院早期职业奖支持一个研究半导体纳米级自旋输运的项目。到目前为止,大多数研究都集中在微米甚至更大长度尺度上的自旋输运。为了将自旋电子学与纳米技术相结合,理解和控制半导体中纳米尺度的自旋输运是至关重要的。这种运输将在很短的时间内进行。该项目将使用新型激光技术解决这一关键问题,该技术能够检测快至70飞秒的事件和小至百分之一纳米的自旋运动。砷化镓及其纳米结构将用于研究无碰撞自旋输运(称为弹道自旋输运)的几个关键方面。该项目将提高我们对半导体自旋动力学的认识,并为纳米级自旋电子学提供全面的信息。这个项目的教育部分与研究工作很好地结合在一起。将开设一门关于激光原理和技术的新课程。尖端研究将涉及研究生和本科生,以及高中教师。关于在非常短的时间尺度上发生的事情的外展项目以及关于材料基本过程的项目也将根据研究主题进行开发。****技术摘要****该学院早期职业奖支持半导体体、量子阱和量子线中纳米级弹道自旋输运的实验研究。自旋输运是自旋电子器件中的一个基本过程。到目前为止,大多数研究都集中在大尺度的输运上,其中输运主要是漂移-扩散过程。由于集成电路上电子器件的尺寸已经缩小到60纳米,这与电子的平均自由程相当甚至更小,因此有必要在纳米尺度上理解和控制弹道自旋输运。在这个项目中,半导体中的纳米级自旋输运将通过使用超快激光技术进行研究,该技术的时间分辨率为70飞秒,并且能够检测到小到10皮米的运动。通过跟踪自旋在真实空间和实时中的位置,可以直接观察和研究纳米尺度的弹道自旋输运。将研究弹道自旋输运的几个关键方面。所提出的研究将为纳米自旋电子学提供全面的信息,并揭示涉及弹道自旋输运的丰富物理。这个项目的教育部分与研究工作很好地结合在一起。将开设一门关于激光原理和技术的新课程。尖端研究将涉及研究生和本科生,以及高中教师。此外,还将根据研究课题制定外展项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hui Zhao其他文献
Implicit 3D Modeling of Ore Body from Geological Boreholes Data Using Hermite Radial Basis Functions
使用 Hermite 径向基函数根据地质钻孔数据对矿体进行隐式 3D 建模
- DOI:
10.3390/min8100443 - 发表时间:
2018-10 - 期刊:
- 影响因子:2.5
- 作者:
Jimiao Wang;Hui Zhao;Lin Bi;Liguan Wang - 通讯作者:
Liguan Wang
Clinical analysis on surgical management of type III external auditory canal cholesteatoma: a report of 12 cases
Ⅲ型外耳道胆脂瘤手术治疗12例临床分析
- DOI:
10.3109/00016489.2016.1173227 - 发表时间:
2016 - 期刊:
- 影响因子:1.4
- 作者:
Yan Yan;Siqi Dong;Q. Hao;Riyuan Liu;Guangyu Xu;Hui Zhao;Shi - 通讯作者:
Shi
Sphere to disk transformation of micro-particle composed of azobenzene-containing anphiphilic diblock copolymers under irradiation at 436 nm
436 nm 照射下含偶氮苯两亲性二嵌段共聚物微粒的球盘转变
- DOI:
- 发表时间:
- 期刊:
- 影响因子:6
- 作者:
Wei Su;Hui Zhao;Yinmei Li;Qijin Zhang;Zhong Wang - 通讯作者:
Zhong Wang
Testosterone enhances mitochondrial complex V function in the substantia nigra of aged male rats
睾酮增强老年雄性大鼠黑质中线粒体复合物 V 的功能
- DOI:
10.18632/aging.103265 - 发表时间:
2020-05 - 期刊:
- 影响因子:0
- 作者:
Tianyun Zhang;Yu Wang;Yunxiao Kang;Li Wang;Hui Zhao;Xiaoming Ji;Yuanxiang Huang;Wensheng Yan;Rui Cui;Guoliang Zhang;Geming Shi - 通讯作者:
Geming Shi
Dermatologic Uses and Effects of Lycium Barbarum
枸杞的皮肤病用途和作用
- DOI:
10.1007/978-94-017-9658-3_5 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Hui Zhao;K. Bojanowski - 通讯作者:
K. Bojanowski
Hui Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hui Zhao', 18)}}的其他基金
Collaborative Research: Self-regulated non-equilibrium assembly of chiral colloidal clusters via electrokinetic interactions
合作研究:通过动电相互作用实现手性胶体簇的自我调节非平衡组装
- 批准号:
2314340 - 财政年份:2023
- 资助金额:
$ 41.7万 - 项目类别:
Continuing Grant
Collaborative Research: Concentration Polarization Induced Electrokinetic Flows around dielectric Surfaces
合作研究:聚光极化引起介电表面周围的动电流
- 批准号:
2127852 - 财政年份:2021
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
REU Site: Interdisciplinary Research Experience on Accelerated Deep Learning through A Hardware-Software Collaborative Approach
REU 网站:通过硬件-软件协作方法加速深度学习的跨学科研究经验
- 批准号:
2051062 - 财政年份:2021
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
CAREER: Reinventing Network-on-Chips of GPU-Accelerated Systems
职业:重塑 GPU 加速系统的片上网络
- 批准号:
2046186 - 财政年份:2021
- 资助金额:
$ 41.7万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Tangram: Scaling into the Exascale Era with Reconfigurable Aggregated "Virtual Chips"
合作研究:SHF:小型:七巧板:通过可重构聚合“虚拟芯片”扩展到百亿亿次时代
- 批准号:
2008911 - 财政年份:2020
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Bioinspired Nanomanufacturing of Graphene-embedded Superhydrophobic Surfaces with Mechanical and Chemical Robustness
具有机械和化学稳定性的石墨烯嵌入超疏水表面的仿生纳米制造
- 批准号:
1911719 - 财政年份:2019
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Super-Hydrophobic Surface Enabled Microfluidic Energy Conversion
超疏水表面实现微流体能量转换
- 批准号:
1509866 - 财政年份:2015
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Novel transport phenomena in two-dimensional crystals beyond graphene
石墨烯以外的二维晶体中的新颖输运现象
- 批准号:
1505852 - 财政年份:2015
- 资助金额:
$ 41.7万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Impact of MRI contrast agent design on nanoscale interactions with neutrophils and platelets
职业:MRI 造影剂设计对中性粒细胞和血小板纳米级相互作用的影响
- 批准号:
2339015 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Conference: 2024 NanoFlorida Conference: New Frontiers in Nanoscale interactions
会议:2024 年纳米佛罗里达会议:纳米尺度相互作用的新前沿
- 批准号:
2415310 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Amplification of chiral recognition and discrimination among amino-acid-based nanoscale ions during assembly induced by electrostatic interaction
静电相互作用诱导组装过程中氨基酸纳米级离子之间手性识别和辨别的放大
- 批准号:
2309886 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Continuing Grant
Picometre Surface Nanoscale Axial Photonics (PicoSNAP)
皮米表面纳米级轴向光子学 (PicoSNAP)
- 批准号:
EP/X03772X/1 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Research Grant
Correlating neuronal activity and large volume nanoscale imaging using AI
使用 AI 将神经元活动与大体积纳米级成像关联起来
- 批准号:
BB/Y51391X/1 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Research Grant
ERI: Molecular-level Characterization of Water-in-Salt Electric Double-Layer Capacitors: Nanoscale Thermal Effects on Differential Capacitance
ERI:盐包水双电层电容器的分子级表征:微分电容的纳米级热效应
- 批准号:
2347562 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
REU Site: The Physics of Waves from the Nanoscale to the Cosmic Scale
REU 站点:从纳米尺度到宇宙尺度的波物理学
- 批准号:
2349426 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Quantum microscopy facility for ultrasensitive nanoscale magnetic imaging
用于超灵敏纳米级磁成像的量子显微镜设备
- 批准号:
LE240100092 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Single-atom quantum phenomena in nanoscale semiconductor devices
纳米级半导体器件中的单原子量子现象
- 批准号:
EP/V048333/2 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Research Grant
CAREER: Engineering Chiral Nanoscale Interactions to Enhance Nanomaterial Transport and Uptake in Tissue and at Biointerfaces
职业:工程手性纳米级相互作用以增强组织和生物界面中纳米材料的运输和吸收
- 批准号:
2337387 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Continuing Grant