CAREER: Plasmon Tomography

职业:等离子断层扫描

基本信息

  • 批准号:
    0954490
  • 负责人:
  • 金额:
    $ 39.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-02-15 至 2015-01-31
  • 项目状态:
    已结题

项目摘要

This project concerns the development of an advanced microscopy system for visualizing the propagation of light confined to nanometer-scale structures, to aid in the design of next-generation microchips integrating photonics and electronics. Photonics involves the transmission and manipulation of information using photons, in contrast to electric charges used in electronics. Great potential is seen for devices integrating the two technologies. A major obstacle to this integration is the relatively large scale of photonic structures, which are typically on the order of several micrometers in size. By comparison, state-oft-the-art electronic components are as small as tens of nanometers in size?almost 1,000 times smaller. A promising solution to the problem of disparate scales is found in surface plasmon polaritons, a type of electromagnetic wave that propagates along metal-dielectric interfaces when the interface is excited by a photon. While the frequency of a surface plasmon polariton is that of the exciting photon, the wavelength is much smaller?on the order of nanometers. Thus structures fabricated to guide and manipulate surface plasmon polaritons are of the same scale as features in state-of-the-art electronics. The high losses inherent to electromagnetic wave propagation in metal are addressed by incorporating an active gain medium into the structures. The science of manipulating surface plasmon polaritons is plasmonics. Plasmonic devices may be designed to carry out many information-handling functions now implemented by electronics.As a relatively new field, plasmonics lacks the multitude of diagnostics available in a more mature area, such as electronics. Progress in plasmonic device development will be greatly facilitated by new imaging and visualization tools. The subject of this project is plasmon tomography, in which an advanced microscope is designed to image surface plasmon polariton propagation in nanoscale structures. The microscope may also be configured to use plasmonics to perform optical microscopy with sub-wavelength, nanometer-scale, resolution. This will provide imaging performance comparable with much more expensive alternatives, such as scanning electron microscopy. Plasmon tomography has a diverse range of applications, including biological research and medical diagnostics. Massively parallel arrays of plasmon tomography-based sensors may be produced, with applications to chemical and biological threat detection for homeland security, defense, and environmental monitoring.Activities under this CAREER program span a broad range of technical and educational issues in science and engineering, and address important applications. The major research topics are as follows: 1. Image formation in surface plasmon microscopes: a comprehensive description of the relation between the back focal plane and sample?s images will be developed through combined experimental and theoretical approaches. This will allow further optimization of these microscopic techniques. 2. Surface plasmon propagation in plasmonic structures: novel plasmonics structures including an active gain medium will be fabricated and plasmon propagation through them will be characterized using the developed imaging techniques. When integrated, these studies will result in advanced quantitative methods for characterization of plasmon propagation in plasmonic devices and sensors with huge parallel capabilities. The research plan will be integrated with educational development and outreach activities. Graduate and undergraduate students will be involved in interdisciplinary research at the Texas Tech University Nano Tech Center relevant to our nation?s technical training needs. In addition, under this CAREER project the PI will prepare and offer a course on plasmonics with emphasis in plasmon-based imaging techniques for advanced undergraduate and graduate students and will be involved in local programs for recruiting students, emphasizing under-represented groups, to work in science and engineering.
该项目涉及开发一种先进的显微镜系统,用于可视化纳米尺度结构内光的传播,以帮助设计集成光子学和电子学的下一代微芯片。与电子学中使用的电荷不同,光子学涉及使用光子传输和操纵信息。整合这两种技术的设备潜力巨大。这种集成的一个主要障碍是光子结构的规模相对较大,其尺寸通常在几微米量级。相比之下,最先进的电子元件只有几十纳米大小。几乎小了1000倍。在表面等离子激元中发现了解决不同尺度问题的一个有希望的解决方案。表面等离子激元是一种电磁波,当界面被光子激发时,它沿着金属-介电界面传播。虽然表面等离子激元极化子的频率是激发光子的频率,但波长要小得多。在纳米量级上。因此,制造用于引导和操纵表面等离子激元的结构与最先进的电子学具有相同的规模。电磁波在金属中传播所固有的高损耗通过在结构中加入有源增益介质来解决。操纵表面等离子体激元的科学是等离子体动力学。等离子体器件可以设计成执行许多现在由电子学实现的信息处理功能。等离子体动力学作为一个相对较新的领域,缺乏在一个更成熟的领域(如电子学)可用的大量诊断。新的成像和可视化工具将极大地促进等离子体器件的发展。这个项目的主题是等离子体层析成像,其中一个先进的显微镜被设计用来成像表面等离子体极化子在纳米级结构中的传播。该显微镜还可以配置为使用等离子体进行亚波长、纳米级分辨率的光学显微镜。这将提供与更昂贵的替代品(如扫描电子显微镜)相当的成像性能。等离子体层析成像具有广泛的应用范围,包括生物研究和医学诊断。基于等离子体层析成像的传感器的大规模并行阵列可能被生产出来,应用于国土安全、国防和环境监测的化学和生物威胁检测。该职业计划下的活动涵盖了科学和工程领域广泛的技术和教育问题,并解决了重要的应用问题。主要的研究课题如下:1。表面等离子体显微镜的成像:后焦平面与样品之间关系的综合描述?S图像将通过实验和理论相结合的方法开发。这将允许进一步优化这些微观技术。2. 表面等离子体在等离子体结构中的传播:包括有源增益介质在内的新型等离子体结构将被制造出来,等离子体在其中的传播将利用已开发的成像技术进行表征。整合后,这些研究将产生先进的定量方法,用于表征具有巨大并行能力的等离子体器件和传感器中的等离子体传播。这项研究计划将与教育发展和外联活动结合起来。研究生和本科生将在德州理工大学纳米技术中心参与与我们国家相关的跨学科研究。S技术培训需求。此外,在这个职业项目下,PI将为本科生和研究生准备并提供一门关于等离子体动力学的课程,重点是基于等离子体的成像技术,并将参与当地的学生招募计划,强调未被充分代表的群体,从事科学和工程工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luis Grave de Peralta其他文献

Deep Ultraviolet Optical Anisotropy of β-Gallium Oxide Thin Films
β-氧化镓薄膜的深紫外光学各向异性
  • DOI:
    10.1021/acsomega.3c10280
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Yu;Gaihua Ye;Cynthia Nnokwe;Vladimir Kuryatkov;Juliusz Warzywoda;Luis Grave de Peralta;Rui He;A. Bernussi
  • 通讯作者:
    A. Bernussi
Relativistic corrections to the Di{\'o}si-Penrose model
Di{o}si-Penrose 模型的相对论修正
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. A. Poveda;Luis Grave de Peralta;A. Ruiz
  • 通讯作者:
    A. Ruiz
Exact quasi-relativistic wavefunctions of Hydrogen-like atoms
类氢原子的精确准相对论波函数
  • DOI:
    10.1038/s41598-020-71505-w
  • 发表时间:
    2020-09-10
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Luis Grave de Peralta
  • 通讯作者:
    Luis Grave de Peralta
Quasi-relativistic description of a quantum particle moving through one-dimensional piecewise constant potentials
  • DOI:
    10.1016/j.rinp.2020.103318
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Luis Grave de Peralta
  • 通讯作者:
    Luis Grave de Peralta

Luis Grave de Peralta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luis Grave de Peralta', 18)}}的其他基金

Simple, cost effective, and electronically-controlled condensers to increase the resolution and contrast of near-infrared microscopes
简单、经济高效的电子控制聚光镜,可提高近红外显微镜的分辨率和对比度
  • 批准号:
    1404394
  • 财政年份:
    2014
  • 资助金额:
    $ 39.66万
  • 项目类别:
    Standard Grant
SBIR Phase II: Athermal Multiplexers Based on Reflective Arrayed Waveguide Grating Devices
SBIR第二阶段:基于反射阵列波导光栅器件的无热复用器
  • 批准号:
    0450072
  • 财政年份:
    2005
  • 资助金额:
    $ 39.66万
  • 项目类别:
    Standard Grant
SBIR Phase I: Athermal Multiplexers Based on Reflective Arrayed Waveguide Grating Devices
SBIR 第一阶段:基于反射阵列波导光栅器件的无热复用器
  • 批准号:
    0339012
  • 财政年份:
    2004
  • 资助金额:
    $ 39.66万
  • 项目类别:
    Standard Grant

相似国自然基金

Tamm plasmon polaritons在金属与有限全介质光子晶体组成的复杂周期结构中传输特性的研究
  • 批准号:
    11004121
  • 批准年份:
    2010
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Plasmon-Enhanced FerroElectric Discovery
等离激元增强铁电的发现
  • 批准号:
    EP/X034593/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.66万
  • 项目类别:
    Research Grant
Next Generation Plasmon Coupling Nanosensors
下一代等离子耦合纳米传感器
  • 批准号:
    2344525
  • 财政年份:
    2024
  • 资助金额:
    $ 39.66万
  • 项目类别:
    Standard Grant
Quantum Hall plasmon resonator-based qubit sensing and multi-qubit coupling
基于量子霍尔等离子体谐振器的量子位传感和多量子位耦合
  • 批准号:
    24K06915
  • 财政年份:
    2024
  • 资助金额:
    $ 39.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
  • 批准号:
    2230729
  • 财政年份:
    2023
  • 资助金额:
    $ 39.66万
  • 项目类别:
    Continuing Grant
Establishment of highly selective production method of metal nanoparticle dimer using plasmon induced chemical reaction
利用等离子体诱导化学反应高选择性生产金属纳米粒子二聚体的方法的建立
  • 批准号:
    22KJ2306
  • 财政年份:
    2023
  • 资助金额:
    $ 39.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Ultrafast Dephasing of Strongly Coupled Plasmon-Exciton States
强耦合等离子体激子态的超快相移
  • 批准号:
    2304905
  • 财政年份:
    2023
  • 资助金额:
    $ 39.66万
  • 项目类别:
    Standard Grant
CAS: Novel Plasmon-Assisted Reaction Pathways on Well-Defined TiO2 Single Microcrystals in Realistic Conditions Using in-Situ Spectroscopies
CAS:使用原位光谱在现实条件下明确定义的 TiO2 单微晶上的新型等离子体辅助反应途径
  • 批准号:
    2247107
  • 财政年份:
    2023
  • 资助金额:
    $ 39.66万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Investigation of Electrochromic Polymer Induced Plasmon Switching on Gold Nanocrystals and its Application for Smart Windows
LEAPS-MPS:金纳米晶体电致变色聚合物诱导等离子激元开关的研究及其在智能窗户中的应用
  • 批准号:
    2316845
  • 财政年份:
    2023
  • 资助金额:
    $ 39.66万
  • 项目类别:
    Standard Grant
UV Plasmon-Enhanced Chiroptical Spectroscopy of Membrane-Binding Proteins
膜结合蛋白的紫外等离子增强手性光谱
  • 批准号:
    10680969
  • 财政年份:
    2023
  • 资助金额:
    $ 39.66万
  • 项目类别:
Emission wavelength control and device performance improvement of OLEDs based on plasmon-microcavity coupling
基于等离子体-微腔耦合的OLED发射波长控制和器件性能改进
  • 批准号:
    23K04658
  • 财政年份:
    2023
  • 资助金额:
    $ 39.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了