CAREER: Unraveling Molecular Mechanisms of Biomineralization

职业:揭示生物矿化的分子机制

基本信息

  • 批准号:
    0955071
  • 负责人:
  • 金额:
    $ 43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARYThis CAREER award supports computational research and education to advance the fundamental understanding of biomineralization processes, with an emphasis on silica and hydroxyapatite assembly in the presence of short proteins in aqueous solution. This includes quantum-mechanical calculations, the development of state-of-the-art force fields, coarse-grain models, and understanding experimental observations at the molecular scale to unravel interactions which enable and control the formation and properties of biominerals, bone, and teeth. Knowledge of these molecular-scale interactions will guide in the synthesis of specific biological templates such as peptides and small proteins to assemble precursors into minerals of desired shape and properties. Potential applications include new separation media and catalyst supports, artificial bone and dental materials, and molecular therapeutics for removal of mineral deposits in atherosclerosis.This research will address current difficulties in understanding the specific binding of biomolecules to inorganic surfaces. Accurate molecular models will be made available to investigate such interfaces at length scales of 10 nanometers and time scales exceeding 10 nanoseconds in full atomic resolution. Specifically, methodology development includes: (1) force fields for silica Q2, Q3, and Q4 surfaces and various ratios between silanol and siloxide groups which quantitatively reproduce surface and interface tensions measured in experiment, (2) similarly accurate force fields for hydroxyapatite and fluoroapatite, (3) equilibration algorithms and analysis tools for the simulation of non-covalent self-assembly of nanostructures of different morphology, (4) the development of multiscale simulation approaches from ab-initio to coarse-grain models and bioinformatics approaches. Force field development will rely on previously developed methods which enable one order of magnitude more accurate computations of interfacial thermodynamic properties compared to earlier models. Results of molecular dynamics, Monte Carlo, and bioinformatics methods will be related to experimental data by collaborators to understand concentration- and chemistry-dependent changes in self-assembly and growth of nanostructures. An important goal of this research is to advance the theory of biological self-assembly and biomineralization with an aim toward synthesis and characterization of novel biomaterials through collaborations with experimentalists.The educational activities of this CAREER award include training graduate and undergraduate students, as well as new course development in computational materials science. Related STEM concepts will also be introduced to High School students through hands-on projects at the University of Akron in the labs of several researchers as part of the Advanced Placement chemistry program. An Annual Engineering Career Day will be organized at the University of Akron, including presentations and interactive sessions across several engineering disciplines to introduce High School students to intellectual challenges and career opportunities in engineering. High School teachers will be engaged in these activities in collaboration with the University of Akron. The PI will also organize the first two rounds of the US National Chemistry Olympiad for High School students every year which covers participation from 72 High Schools in a three-County region around Akron, Ohio.NON-TECHNICAL SUMMARYThis CAREER award supports computational research and education to advance the fundamental understanding of the creation of biological mineral structures such as diatoms, seashells, bone, and teeth. This is a common process in nature for the synthesis of structural and highly functional materials under environmentally friendly conditions. The PI will use theoretical models and computation to gain insight into the formation of complex biominerals, bone, and teeth and to guide the synthesis of materials that mimic those created by living organisms. Potential applications include materials for orthopedics, and molecular therapeutics for atherosclerosis. The educational activities of this CAREER award include training graduate and undergraduate students, as well as new course development in computational materials science. Related STEM concepts will also be introduced to High School students through hands-on projects at the University of Akron in the labs of several researchers as part of the Advanced Placement chemistry program. An Annual Engineering Career Day will be organized at the University of Akron, including presentations and interactive sessions across several engineering disciplines to introduce High School students to intellectual challenges and career opportunities in engineering. High School teachers will be engaged in these activities in collaboration with the University of Akron. The PI will also organize the first two rounds of the US National Chemistry Olympiad for High School students every year which covers participation from 72 High Schools in a three-County region around Akron, Ohio.
技术总结该职业奖支持计算研究和教育,以促进对生物矿化过程的基本理解,重点是在水溶液中存在短蛋白质的情况下二氧化硅和羟基磷灰石组装。这包括量子力学计算,最先进的力场,粗粒模型的发展,以及在分子尺度上理解实验观察,以揭示能够和控制生物矿物,骨骼和牙齿的形成和性质的相互作用。这些分子尺度相互作用的知识将指导特定生物模板的合成,如肽和小蛋白质,以将前体组装成所需形状和性质的矿物质。潜在的应用包括新的分离介质和催化剂载体,人工骨和牙科材料,以及用于去除动脉粥样硬化中的矿物质沉积的分子疗法。精确的分子模型将可用于研究这种界面,其长度尺度为10纳米,时间尺度超过10纳秒,完全原子分辨率。具体而言,方法制定包括:(1)二氧化硅Q2、Q3和Q4表面的力场以及硅烷醇和硅氧化物基团之间的各种比率,其定量地再现了实验中测量的表面和界面张力,(2)羟基磷灰石和氟磷灰石的类似精确力场,(3)用于模拟不同形态的纳米结构的非共价自组装的平衡算法和分析工具,(4)从从头算到粗粒模型和生物信息学方法的多尺度模拟方法的发展。力场的发展将依赖于以前开发的方法,使一个数量级更准确的计算界面的热力学性质相比,早期的模型。分子动力学、蒙特卡罗和生物信息学方法的结果将与合作者的实验数据相关,以了解纳米结构自组装和生长中依赖于浓度和化学的变化。该研究的一个重要目标是推进生物自组装和生物矿化的理论,旨在通过与实验学家的合作,合成和表征新型生物材料。该CAREER奖的教育活动包括培养研究生和本科生,以及计算材料科学的新课程开发。相关的STEM概念也将通过在阿克伦大学的几个研究人员的实验室动手项目介绍给高中学生,作为高级安置化学课程的一部分。每年的工程职业日将在阿克伦大学组织,包括跨几个工程学科的演示和互动会议,向高中生介绍工程方面的智力挑战和职业机会。高中教师将与阿克伦大学合作参与这些活动。PI还将组织每年的前两轮美国高中生全国化学奥林匹克竞赛,参赛者来自俄亥俄州阿克伦市周围三个县的72所高中。非技术总结该职业奖支持计算研究和教育,以促进对生物矿物结构(如硅藻、贝壳、骨骼和牙齿)的基本理解。这是自然界中在环境友好条件下合成结构和高功能材料的常见方法。PI将使用理论模型和计算来深入了解复杂生物矿物,骨骼和牙齿的形成,并指导模拟生物体所创造的材料的合成。潜在的应用包括骨科材料和动脉粥样硬化的分子治疗。该职业奖的教育活动包括培训研究生和本科生,以及计算材料科学的新课程开发。相关的STEM概念也将通过在阿克伦大学的几个研究人员的实验室动手项目介绍给高中学生,作为高级安置化学课程的一部分。每年的工程职业日将在阿克伦大学组织,包括跨几个工程学科的演示和互动会议,向高中生介绍工程方面的智力挑战和职业机会。高中教师将与阿克伦大学合作参与这些活动。PI还将每年组织前两轮美国全国高中生化学奥林匹克竞赛,涵盖俄亥俄州阿克伦市周围三个县的72所高中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hendrik Heinz其他文献

En route to multi-model scheme for clinker comminution with chemical grinding aids
正在采用化学助磨剂粉碎熟料的多模型方案
  • DOI:
    10.1179/1743676115y.0000000023
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Ratan K Mishra;D. Geissbuhler;Humberto A. Carmona;F. Wittel;M. Sawley;Martin Weibel;Emmanuel Gallucci;Hans J. Herrmann;Hendrik Heinz;R. Flatt
  • 通讯作者:
    R. Flatt
Multiscale Experiments and Modeling in Biomaterials and Biological Materials, Part II
  • DOI:
    10.1007/s11837-021-04758-z
  • 发表时间:
    2021-06-21
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Jing Du;Dinesh Katti;Hendrik Heinz
  • 通讯作者:
    Hendrik Heinz
Hierarchically structured bioinspired nanocomposites
分层结构的仿生纳米复合材料
  • DOI:
    10.1038/s41563-022-01384-1
  • 发表时间:
    2022-11-28
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Dhriti Nepal;Saewon Kang;Katarina M. Adstedt;Krishan Kanhaiya;Michael R. Bockstaller;L. Catherine Brinson;Markus J. Buehler;Peter V. Coveney;Kaushik Dayal;Jaafar A. El-Awady;Luke C. Henderson;David L. Kaplan;Sinan Keten;Nicholas A. Kotov;George C. Schatz;Silvia Vignolini;Fritz Vollrath;Yusu Wang;Boris I. Yakobson;Vladimir V. Tsukruk;Hendrik Heinz
  • 通讯作者:
    Hendrik Heinz
Atomic-scale identi�cation of the active sites of nanocatalysts
纳米催化剂活性位点的原子尺度鉴定
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yao Yang;Jihan Zhou;Zipeng Zhao;Geng Sun;S. Moniri;Colin Ophus;Yongsoo Yang;Ziyang Wei;Yakun Yuan;Cheng Zhu;Yang Liu;Qiang Sun;Qingying Jia;Hendrik Heinz;J. Ciston;P. Ercius;P. Sautet;Yu Huang;J. Miao
  • 通讯作者:
    J. Miao
Multiscale Experiments and Modeling in Biomaterials and Biological Materials, Part I
  • DOI:
    10.1007/s11837-021-04692-0
  • 发表时间:
    2021-04-21
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Jing Du;Dinesh Katti;Hendrik Heinz
  • 通讯作者:
    Hendrik Heinz

Hendrik Heinz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hendrik Heinz', 18)}}的其他基金

Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
  • 批准号:
    2323546
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant
Bioinspired Structural Composites: Advances in Experiments, Simulations, and AI Based Design
仿生结构复合材料:实验、模拟和基于人工智能的设计的进展
  • 批准号:
    2214718
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Cyberloop for Accelerated Bionanomaterials Design
合作研究:框架:加速生物纳米材料设计的 Cyber​​loop
  • 批准号:
    1931587
  • 财政年份:
    2019
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Tailored Interphases for High-Strength and Functional Composites - Advances in Experiments, Simulations and AI-Based Designs
高强度和功能复合材料的定制界面——实验、模拟和基于人工智能的设计的进展
  • 批准号:
    1941104
  • 财政年份:
    2019
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    1940335
  • 财政年份:
    2019
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Translocation, biological fate, stability, and effective dose of engineered nanomaterials for nanosafety studies
用于纳米安全研究的工程纳米材料的易位、生物命运、稳定性和有效剂量
  • 批准号:
    1530790
  • 财政年份:
    2016
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant
DMREF/Collaborative Research: Design and Testing of Nanoalloy Catalysts in 3D Atomic Resolution
DMREF/合作研究:3D 原子分辨率纳米合金催化剂的设计和测试
  • 批准号:
    1623947
  • 财政年份:
    2015
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Design and Testing of Nanoalloy Catalysts in 3D Atomic Resolution
DMREF/合作研究:3D 原子分辨率纳米合金催化剂的设计和测试
  • 批准号:
    1437355
  • 财政年份:
    2014
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Travel Support for International Speakers for a Symposium on Simulation of Hybrid Interfaces and Polymeric Materials at the 240th ACS National Meeting in Boston, MA
为参加在马萨诸塞州波士顿举行的第 240 届 ACS 全国会议混合接口和聚合物材料仿真研讨会的国际演讲者提供差旅支持
  • 批准号:
    1038782
  • 财政年份:
    2010
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant

相似海外基金

Unraveling the genetic modifier, and molecular and neural basis of intractable epilepsy in a mouse model of CDKL5 deficiency disorder
揭示 CDKL5 缺乏症小鼠模型中顽固性癫痫的遗传修饰以及分子和神经基础
  • 批准号:
    23K05614
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unraveling the mechanism behind enhanced herbicide selectivity by safeners through molecular cross-species analyzes of crop and weed.
通过作物和杂草的分子跨物种分析,揭示安全剂增强除草剂选择性背后的机制。
  • 批准号:
    23K18025
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Unraveling Silent Progression in MS Using Advanced Quantitative MRI, PET Molecular Imaging and Computational Neuroanatomy
利用先进的定量 MRI、PET 分子成像和计算神经解剖学揭示多发性硬化症的无声进展
  • 批准号:
    470218
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
    Operating Grants
Unraveling the Allosteric Mechanism of Macrophage Migration Inhibitory Factor with Molecular Resolution
用分子分辨率揭示巨噬细胞迁移抑制因子的变构机制
  • 批准号:
    10521825
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
Unraveling the Allosteric Mechanism of Macrophage Migration Inhibitory Factor with Molecular Resolution
用分子分辨率揭示巨噬细胞迁移抑制因子的变构机制
  • 批准号:
    10708796
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
Unraveling the Associations of Molecular-Genetic Bioenergetics and Chemotherapy-Induced Fatigue Symptoms in Patients with Breast Cancer
揭示乳腺癌患者分子遗传学生物能学与化疗引起的疲劳症状之间的关联
  • 批准号:
    10684326
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
Collaborative Research: Unraveling Structural and Mechanistic Aspects of RNA Viral Frameshifting Elements by Graph Theory and Molecular Modeling
合作研究:通过图论和分子建模揭示RNA病毒移码元件的结构和机制
  • 批准号:
    2151777
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant
Collaborative Research: Unraveling Structural and Mechanistic Aspects of RNA Viral Frameshifting Elements by Graph Theory and Molecular Modeling
合作研究:通过图论和分子建模揭示RNA病毒移码元件的结构和机制
  • 批准号:
    2151859
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant
Unraveling the molecular events driven by CaMKII in Ca2+-coupled cells
解开 Ca2 偶联细胞中 CaMKII 驱动的分子事件
  • 批准号:
    10406652
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
Unraveling the biogenesis and molecular mechanisms of a neuronal-enriched circRNA altered in psychiatric disease
揭示精神疾病中改变的富含神经元的circRNA的生物发生和分子机制
  • 批准号:
    10704016
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了