Translocation, biological fate, stability, and effective dose of engineered nanomaterials for nanosafety studies

用于纳米安全研究的工程纳米材料的易位、生物命运、稳定性和有效剂量

基本信息

  • 批准号:
    1530790
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

1530790(Heinz)This proposal deals with in vitro and in vivo fate studies of engineered nanomaterials (NMs). ZnO, Au and PLGA NPs and Graphene will be produced with controlled shape, size and surface properties. The intracellular localization, dynamics and state of aggregation of the NMs will be first studied in vitro by a combination of biophysical techniques. Ion Beam Microscopy will be applied to determine intracellular dose of ZnO and Au NPs. Toxicological studies will be performed and related to the intracelular dose. The stability of the bio corona and conformational state of proteins in the corona will be studied intracelularly. NMs will be further radiolabelled for in vivo imaging and strategies for dual radiolabelling will be developed. Positron Emission Tomography and Single Photon Emission Computed Tomography will be applied to study the biodistribution and fate of radiolabelled NMs in small rodents following different administration routes. By dual radio labelling the in vivo stability of NMs will be investigated.The synthesis of various nanomaterials (NM) will be carried out, including metal and metal oxide nanoparticles, polymeric PLGA based nanoparticles, as well as graphene and graphene oxide nanomaterials. The materials will be surface-functionalized in different ways, and the introduction of dual radiolabels in the core and in the corona will be explored to be able to track the location of the NM during in vitro and in vivo studies by collaborators. Characterization of the NMs involves zeta potential measurements, DLS, NTA, ATR-FTIR, TEM, and micro scanning transmission ion microscopy. The specific interactions between the nanoparticles and their corona will also be explored by molecular simulation, which allows to track the effects of surface chemistry on ligand packing, binding strength, and agglomeration of the nanomaterials. Further tests by steered molecular dynamics simulation aim at understanding the translocation process through cell membranes and probing the stability of the nanoparticle corona. Specific interactions with selected peptides and proteins will be explored in models to rationalize accumulation in specific organs and tissues as experimental information becomes available.A combination of all-atom and coarse-grain simulations will be employed to explore length scales from nanometers to micrometers.The knowledge generated in this project will be essential to understand the behavior of nanomaterials at cellular and organism levels with the ultimate goal to minimize toxicity. This objective is of paramount importance for future developments in cosmetics, medical and pharmaceutical products, as well as for new structural materials enhanced by nanoscale materials to which humans are exposed. The synthesis, modeling, and testing of various systems also helps uncover ways in which nanomaterials may be designed to minimize toxicity. Nanomaterial stability studies will also tackle issues such as the stability of the coating around the core, the stability of the core itself as well as the degree of aggregation of the nanomaterials. In the project we propose a complex and unprecedented combination of labelling strategies, which will allow the PI to address these issues through highly sensitive, non-invasive imaging techniques such as PET or SPECT. The stability of surface coating can explain why the same nanomaterial core can have different toxicity when functionalized with different coating or even when the same coating is linked to the nanomaterial surface in different ways. Coating and nanomaterial stability in relation with their distribution can explain specific toxicological responses as well as provide understanding on the time frame of the toxicological response. The nanomaterial stability can become a novel toxicological end point and be fundamental in risk assessment. Ultimately, the results will contribute to a quantitative evaluation of risks associated with the materials investigated. The proposed effort will also include the training of PhD students and outreach activities for High School students through Engineering Career Days and hands-on research experiences in university laboratories
1530790(海因茨)该提案涉及工程纳米材料(NM)的体外和体内命运研究。ZnO、Au和PLGA纳米颗粒和石墨烯将以受控的形状、尺寸和表面性质生产。将首先通过生物物理技术的组合在体外研究NM的细胞内定位、动力学和聚集状态。将应用离子束显微镜来确定ZnO和Au NP的细胞内剂量。将进行毒理学研究,并与细胞内剂量相关。将在细胞内研究生物冠的稳定性和冠中蛋白质的构象状态。NM将被进一步放射性标记用于体内成像,并将开发双重放射性标记的策略。将采用正电子发射断层扫描和单光子发射计算机断层扫描研究不同给药途径后放射性标记NM在小型啮齿动物中的生物分布和转归。通过双放射性标记研究纳米材料在体内的稳定性,并合成各种纳米材料,包括金属和金属氧化物纳米颗粒、基于聚合物PLGA的纳米颗粒以及石墨烯和氧化石墨烯纳米材料。这些材料将以不同的方式进行表面功能化,并将探索在核心和冠中引入双放射性标记,以便能够在合作者的体外和体内研究期间跟踪NM的位置。纳米材料的表征包括zeta电位测量、DLS、NTA、ATR-FTIR、TEM和微扫描透射离子显微镜。纳米粒子和它们的电晕之间的特定相互作用也将通过分子模拟来探索,该分子模拟允许跟踪表面化学对纳米材料的配体填充、结合强度和团聚的影响。通过操纵分子动力学模拟的进一步测试旨在理解通过细胞膜的移位过程并探测纳米颗粒冠的稳定性。随着实验信息的可用,将在模型中探索与选定肽和蛋白质的特异性相互作用,以使特定器官和组织中的积累合理化。颗粒模拟将用于探索从纳米到微米的长度尺度。在这个项目中产生的知识将是理解纳米材料在细胞和生物体水平上的行为的必要条件,最终目标是以减少毒性。这一目标对于化妆品、医疗和制药产品的未来发展以及人类接触的纳米级材料增强的新结构材料至关重要。各种系统的合成、建模和测试也有助于揭示纳米材料的设计方法,以最大限度地减少毒性。纳米材料稳定性研究还将解决核心周围涂层的稳定性、核心本身的稳定性以及纳米材料的聚集程度等问题。在该项目中,我们提出了一种复杂而前所未有的标记策略组合,这将使PI能够通过高灵敏度的非侵入性成像技术(如PET或SPECT)来解决这些问题。表面涂层的稳定性可以解释为什么相同的纳米材料核心在用不同的涂层官能化时或者甚至当相同的涂层以不同的方式连接到纳米材料表面时可以具有不同的毒性。涂层和纳米材料的稳定性及其分布可以解释特定的毒理学反应,并提供对毒理学反应时间范围的理解。纳米材料的稳定性可以成为一个新的毒理学终点,并在风险评估的基础。最终,结果将有助于对与所研究材料相关的风险进行定量评价。拟议的努力还将包括通过工程职业日和在大学实验室的实践研究经验,对博士生进行培训,并为高中生开展外联活动

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hendrik Heinz其他文献

En route to multi-model scheme for clinker comminution with chemical grinding aids
正在采用化学助磨剂粉碎熟料的多模型方案
  • DOI:
    10.1179/1743676115y.0000000023
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Ratan K Mishra;D. Geissbuhler;Humberto A. Carmona;F. Wittel;M. Sawley;Martin Weibel;Emmanuel Gallucci;Hans J. Herrmann;Hendrik Heinz;R. Flatt
  • 通讯作者:
    R. Flatt
Multiscale Experiments and Modeling in Biomaterials and Biological Materials, Part II
  • DOI:
    10.1007/s11837-021-04758-z
  • 发表时间:
    2021-06-21
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Jing Du;Dinesh Katti;Hendrik Heinz
  • 通讯作者:
    Hendrik Heinz
Hierarchically structured bioinspired nanocomposites
分层结构的仿生纳米复合材料
  • DOI:
    10.1038/s41563-022-01384-1
  • 发表时间:
    2022-11-28
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Dhriti Nepal;Saewon Kang;Katarina M. Adstedt;Krishan Kanhaiya;Michael R. Bockstaller;L. Catherine Brinson;Markus J. Buehler;Peter V. Coveney;Kaushik Dayal;Jaafar A. El-Awady;Luke C. Henderson;David L. Kaplan;Sinan Keten;Nicholas A. Kotov;George C. Schatz;Silvia Vignolini;Fritz Vollrath;Yusu Wang;Boris I. Yakobson;Vladimir V. Tsukruk;Hendrik Heinz
  • 通讯作者:
    Hendrik Heinz
Atomic-scale identi�cation of the active sites of nanocatalysts
纳米催化剂活性位点的原子尺度鉴定
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yao Yang;Jihan Zhou;Zipeng Zhao;Geng Sun;S. Moniri;Colin Ophus;Yongsoo Yang;Ziyang Wei;Yakun Yuan;Cheng Zhu;Yang Liu;Qiang Sun;Qingying Jia;Hendrik Heinz;J. Ciston;P. Ercius;P. Sautet;Yu Huang;J. Miao
  • 通讯作者:
    J. Miao
Multiscale Experiments and Modeling in Biomaterials and Biological Materials, Part I
  • DOI:
    10.1007/s11837-021-04692-0
  • 发表时间:
    2021-04-21
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Jing Du;Dinesh Katti;Hendrik Heinz
  • 通讯作者:
    Hendrik Heinz

Hendrik Heinz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hendrik Heinz', 18)}}的其他基金

Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
  • 批准号:
    2323546
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Bioinspired Structural Composites: Advances in Experiments, Simulations, and AI Based Design
仿生结构复合材料:实验、模拟和基于人工智能的设计的进展
  • 批准号:
    2214718
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Cyberloop for Accelerated Bionanomaterials Design
合作研究:框架:加速生物纳米材料设计的 Cyber​​loop
  • 批准号:
    1931587
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Tailored Interphases for High-Strength and Functional Composites - Advances in Experiments, Simulations and AI-Based Designs
高强度和功能复合材料的定制界面——实验、模拟和基于人工智能的设计的进展
  • 批准号:
    1941104
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    1940335
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Design and Testing of Nanoalloy Catalysts in 3D Atomic Resolution
DMREF/合作研究:3D 原子分辨率纳米合金催化剂的设计和测试
  • 批准号:
    1623947
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Design and Testing of Nanoalloy Catalysts in 3D Atomic Resolution
DMREF/合作研究:3D 原子分辨率纳米合金催化剂的设计和测试
  • 批准号:
    1437355
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Unraveling Molecular Mechanisms of Biomineralization
职业:揭示生物矿化的分子机制
  • 批准号:
    0955071
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Travel Support for International Speakers for a Symposium on Simulation of Hybrid Interfaces and Polymeric Materials at the 240th ACS National Meeting in Boston, MA
为参加在马萨诸塞州波士顿举行的第 240 届 ACS 全国会议混合接口和聚合物材料仿真研讨会的国际演讲者提供差旅支持
  • 批准号:
    1038782
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
  • 批准号:
    82371332
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
过表达CX45联合HCN4基因转染对起搏细胞自律性的影响
  • 批准号:
    81170174
  • 批准年份:
    2011
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
美洲大蠊药材养殖及加工过程中化学成分动态变化与生物活性的相关性研究
  • 批准号:
    81060329
  • 批准年份:
    2010
  • 资助金额:
    26.0 万元
  • 项目类别:
    地区科学基金项目
慢病毒转染嵌合体HCN1+4拼接基因构建生物起搏细胞
  • 批准号:
    81070139
  • 批准年份:
    2010
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
岭南瑶区几种瑶族抗肝炎植物药的化学成分及生物活性研究
  • 批准号:
    20772047
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
TB方法在有机和生物大分子体系计算研究中的应用
  • 批准号:
    20773047
  • 批准年份:
    2007
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目
天然生物材料的多尺度力学与仿生研究
  • 批准号:
    10732050
  • 批准年份:
    2007
  • 资助金额:
    200.0 万元
  • 项目类别:
    重点项目

相似海外基金

METABOLISM: accelerator Mass SpEctrometry to quanTify nanoplastics and decipher their fAte and Behavior in envirOnmentaL and bIological SysteMs
代谢:加速器质谱法可量化纳米塑料并破译其在环境和生物系统中的命运和行为
  • 批准号:
    EP/Y002733/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Chemical Genetic Dissection of SWI/SNF Chromatin Remodeling Complex Functions in Cerebral Cortex Development
大脑皮层发育中 SWI/SNF 染色质重塑复杂功能的化学遗传学解析
  • 批准号:
    10660367
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Harnessing PET to Study the In Vivo Fate and Health Effects of Micro- and Nanoplastics
利用 PET 研究微塑料和纳米塑料的体内命运和健康影响
  • 批准号:
    10890903
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Metabolic Control of Epigenetic Reprogramming in Neovascularization
新血管形成中表观遗传重编程的代谢控制
  • 批准号:
    10605418
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
  • 批准号:
    10587615
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Next generation massively multiplexed combinatorial genetic screens
下一代大规模多重组合遗传筛选
  • 批准号:
    10587354
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Predictive modeling of mammalian cell fate transitions over time and space with single-cell genomics
利用单细胞基因组学预测哺乳动物细胞命运随时间和空间转变的模型
  • 批准号:
    10572855
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Landscapes for Cell State Transition Leveraging by Single-Cell Multi-Omics
单细胞多组学利用细胞状态转变的景观
  • 批准号:
    10712491
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Genomic and functional investigations of the transcriptional regulatory network of tooth enamel development
牙釉质发育转录调控网络的基因组和功能研究
  • 批准号:
    10720303
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
The role of cis-regulatory elements in the inheritance of transcriptional memory through mitosis.
顺式调节元件在通过有丝分裂遗传转录记忆中的作用。
  • 批准号:
    10751881
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了