CAREER: Plasmons for Solar Energy Harvesting

职业:用于太阳能收集的等离子激元

基本信息

  • 批准号:
    0955148
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-05-15 至 2015-04-30
  • 项目状态:
    已结题

项目摘要

0955148BigioniPhotovoltaic solar cell technologies will play a vital role in efforts to reduce carbon emissions and to provide clean and secure sources of energy. However, to be competitive with abundant, nonrenewable fuels such as coal for electric power production, solar panel efficiencies must be improved, and production costs must be reduced in order to deliver a lower unit cost of electric power production. One trend is to reduce the thickness of the solar cell, which decreases distances for charge transport, reduces materials usage, and speeds up the deposition time. Another trend is to use inexpensive materials such as TiO2 or polymers. Thinning cells to improve performance and reduce costs has its limits, since thinner solar cells absorb less light. To address this problem, plasmon-supporting metal particles offer significant promise to increase the ability of thin solar cells to absorb light. Plasmon-supporting metal particles can be used to efficiently couple light into a broad range of photovoltaic materials, without the need to radically redesign devices. Intellectual MeritThis research will develop nanostructured materials for plasmon-mediated solar energy conversion, and gain fundamental understanding of this process. Ligand-passivated colloidal metal nanoparticles will be used as the model plasmonic material, since their optical, electronic, and chemical properties can be independently tuned by the core and ligand shell. The colloidal approach also allows the particles to be mixed or spread in a wide number of materials by a variety of strategies. Using plasmons to improve light absorption in solar cells is expected to have performance enhancing features. Specifically, the high light absorptivity of plasmons produces electrons closer to the photoanode, shortening the charge transfer path and improving photocurrent collection. The decrease in the necessary thickness for the solar cell device stack could also reduce material and processing costs. Furthermore, plasmons enable the use of new materials and strategies that would otherwise be unable to absorb light efficiently. The research has three aims. The first aim is to develop novel synthesis strategies for making nanocomposite materials and hybrid structures for plasmonic light capture. The second aim is establish the fundamental principles governing energy transfer between metal nanoparticles and different photovoltaic media. The third aim is understand the impact of metal nanoparticles on charge transport within these materials in working devices. All of these activities seek to understand the basic science of how plasmon-supporting metal nanoparticles function in photovoltaic energy capture and transfer systems.The novelty and intellectual merit of this research is that it will provide basic understanding of how core-shell plasmonic metal nanoparticles affect light and absorption and charge transfer in photovoltaic devices. This research is potentially transformative because plasmon-mediated solar energy conversion offers a completely new and tunable approach to enhance light absorption and increase charge transport photovoltaic devices, leading to enhanced efficiency and thinner devices that in turn have the potential to reduce unit electrical power generation costs.Broader ImpactsOutcomes of this research have the potential to improve the efficiency and reduce costs of solar cells. These outcomes could also make collateral advancements in related areas such as nanomaterials synthesis, nanostructured thin film growth, and metal-enhanced fluorescence for biological imaging and sensing.The educational activities are designed to integrate alternative energy and nanotechnology research into the education of graduate, undergraduate, and high school students, as well as high school teachers. The first broader impact on education will be the integration of alternative energy and nanotechnology into the undergraduate and graduate curriculum. The second broader impact will result from the involvement of undergraduate and high school students and teachers in chemical and materials research. The third broader impact is the education of the public on general energy concepts, especially in the context of current energy related issues, through a set of modules in a web-based video format.
0955148BigioniPhotovoltaic太阳能电池技术将在减少碳排放和提供清洁安全能源方面发挥至关重要的作用。然而,为了与用于电力生产的丰富的不可再生燃料(例如煤)竞争,必须提高太阳能电池板的效率,并且必须降低生产成本以提供较低的单位电力生产成本。一个趋势是减小太阳能电池的厚度,这减小了电荷传输的距离,减少了材料使用,并加快了沉积时间。另一个趋势是使用廉价的材料,如TiO 2或聚合物。由于更薄的太阳能电池吸收的光更少,因此通过减薄电池来提高性能和降低成本也有其局限性。 为了解决这个问题,支持等离子体的金属颗粒提供了显著的前景,以提高薄太阳能电池吸收光的能力。支持等离子体激元的金属颗粒可用于有效地将光耦合到各种光伏材料中,而无需从根本上重新设计器件。智力价值这项研究将开发纳米结构材料等离子体介导的太阳能转换,并获得这一过程的基本理解。 配体钝化的胶体金属纳米颗粒将被用作模型等离子体材料,因为它们的光学,电子和化学性质可以通过核和配体壳独立地调节。胶体方法还允许通过各种策略将颗粒混合或分散在多种材料中。 使用等离子体激元来改善太阳能电池中的光吸收预期具有性能增强特征。 具体而言,等离子体激元的高光吸收率产生更靠近光电阳极的电子,缩短电荷转移路径并改善光电流收集。 太阳能电池器件叠层的必要厚度的减小还可以降低材料和加工成本。 此外,等离子体激元使新材料和策略的使用成为可能,否则这些材料和策略将无法有效地吸收光。本研究有三个目的。 第一个目标是开发新的合成策略,用于制造纳米复合材料和用于等离子体光捕获的混合结构。 第二个目标是建立金属纳米颗粒和不同光伏介质之间能量转移的基本原理。 第三个目标是了解金属纳米颗粒对工作设备中这些材料内电荷传输的影响。 所有这些活动旨在了解等离子体支持金属纳米粒子在光伏能量捕获和转移系统中的功能的基础科学。这项研究的新奇和智力价值在于,它将提供核壳等离子体金属纳米粒子如何影响光伏器件中的光和吸收以及电荷转移的基本理解。 这项研究是潜在的变革,因为等离子体介导的太阳能转换提供了一个全新的和可调的方法,以提高光吸收和增加电荷传输光伏器件,从而提高效率和更薄的设备,反过来又有可能降低单位发电成本。 这些成果也可以在相关领域取得附带进展,如纳米材料合成,纳米结构薄膜生长,以及用于生物成像和传感的金属增强荧光。教育活动旨在将替代能源和纳米技术研究纳入研究生,本科生和高中学生以及高中教师的教育中。对教育的第一个更广泛的影响将是将替代能源和纳米技术纳入本科和研究生课程。第二个更广泛的影响将来自本科生和高中学生和教师对化学和材料研究的参与。第三个更广泛的影响是,通过一套网络视频模式的单元,对公众进行一般能源概念的教育,特别是在当前与能源有关的问题方面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Terry Bigioni其他文献

Terry Bigioni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Terry Bigioni', 18)}}的其他基金

Fundamental Study of Synthetic and Transformational Reactions of Molecular Silver and Gold Nanoparticles
分子银、金纳米粒子的合成与转化反应的基础研究
  • 批准号:
    1905262
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSF I-Corps: Silver materials for antimicrobial coatings
NSF I-Corps:用于抗菌涂层的银材料
  • 批准号:
    1853675
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
International Symposium on Monolayer-Protected Clusters (ISMPC13)
单层保护团簇国际研讨会(ISMPC13)
  • 批准号:
    1339545
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Interfacial Self Assembly of Nanoparticles and Their Interactions
纳米粒子的界面自组装及其相互作用
  • 批准号:
    1012896
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Light amplification in organic thin films by wgm resonance of long-range surface plasmons and its applications towards wavelength control
通过长程表面等离子体的 wgm 共振实现有机薄膜中的光放大及其在波长控制中的应用
  • 批准号:
    23K04881
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Dispersive Coupling of Light to Surface Plasmons for Biosensing
LEAPS-MPS:用于生物传感的光与表面等离子体的色散耦合
  • 批准号:
    2137952
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Modulating and engineering Luttinger liquid plasmons in low dimensional materials
低维材料中卢廷格液体等离子体的调制和工程
  • 批准号:
    2103721
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Controlling the parity and time-reversal symmetry of graphene Dirac plasmons and its application to terahertz lasers
控制石墨烯狄拉克等离子体激元的奇偶性和时间反演对称性及其在太赫兹激光器中的应用
  • 批准号:
    21H04546
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Functional control of plasmons and phnons at nanoparticle interfaces on oxide semiconductor for thermal management
用于热管理的氧化物半导体纳米颗粒界面处的等离子体激元和声子的功能控制
  • 批准号:
    21H01360
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Exploring chiral edge plasmons in novel two-dimensional materials
职业:探索新型二维材料中的手性边缘等离子体
  • 批准号:
    1945560
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Infrared Chiral Plasmons for Vibrational Circular Dichroism Spectroscopy
用于振动圆二色光谱的红外手性等离子体
  • 批准号:
    2004183
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Plasmons in unstable plasmas
不稳定等离子体中的等离子体
  • 批准号:
    549927-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    University Undergraduate Student Research Awards
Observation and control of the spatio-temporal characteristics of plasmons induced in noble metal nanoparticles
贵金属纳米粒子诱导等离子体激元时空特征的观测与控制
  • 批准号:
    19K15511
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Modélisation de la supraconductivité non conventionnelle dans YPtBi : Détermination de bornes à la température critique d'un supraconducteur par le mécanisme d'appariement des plasmons.
YPtBi 上的超导模型非常规:波内斯的确定和等离子体激元装置超导的温度批判。
  • 批准号:
    549024-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了