CAREER: Control of Functionality in Transition Metal Oxides with Metal-Metal Bonding

职业:通过金属-金属键控制过渡金属氧化物的官能度

基本信息

  • 批准号:
    0955646
  • 负责人:
  • 金额:
    $ 60.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:This research supported by the Solid State and Materials Chemistry program aims to control the functionality of materials by targeting specific electronic structures through "internal design" principles rather than through less direct structure-property relationships. This approach will be used to find new thermoelectric materials within the class of transition metal oxides with direct metal-metal bonding, which lifts the typical degeneracy of the d-electron states giving rise to both small band gap semiconductors and high density-of-states metals. A thorough investigation of physical properties (such as resistivity, magnetism, thermopower, and thermal conductivity) will be undertaken to explore whether the f¬-electron-like states of these compounds can be tuned to produce improved materials performance, and whether these unusual electronic states give rise to any unexpected phenomena. In addition, spectroscopic studies of these materials will be carried out to test the potential of these materials as stable small band gap semiconductors for optical applications. Through these investigations, it should be possible to develop a framework for better understanding this intriguing class of compounds. This work will be supported by efforts to develop synchrotron microcrystallography techniques with the long term goal of obtaining single crystal diffraction data from the crystallites in typical powder samples.NON-TECHNICAL SUMMARY:The performance of many high-tech devices is limited by the properties of the solid state materials from which they are built. This project will test new strategies for designing solid state materials for energy applications, directly incorporating theoretical calculations into the design process to efficiently discover improved materials. The primary target of this project is better thermoelectric materials, which have applications for electricity production through waste heat recovery, satellite power generation, and efficient solid state refrigeration. The metal oxide systems being studied may also provide new superconducting compounds and new small band gap semiconductors for infrared (IR) detection applications that can serve as air stable and non-toxic alternatives to current systems based on cadmium mercury telluride compounds. The fundamental synthesis, characterization, and theoretical skills necessary to understand and carry out the "internal design" of materials will be integrated into teaching and outreach efforts, as they provide the key insights needed to generate materials solutions for energy and other societal challenges. Particular emphasis is placed on crystallography, including national educational efforts aimed at addressing deficiencies in typical academic curricula and at broadening participation in experiments at x-ray and neutron national laboratory facilities. Active research mentoring of students interested in energy research at all levels will be a key component of this effort, including the diverse undergraduate and high school students in the New York City Metropolitan area.
技术概述:这项由固态和材料化学计划支持的研究旨在通过“内部设计”原则而不是通过较不直接的结构-性质关系来针对特定的电子结构来控制材料的功能。这种方法将被用来在具有直接金属-金属键的过渡金属氧化物类中寻找新的热电材料,它解除了d电子态的典型简并,导致了小禁带半导体和高态密度金属。将对物理性质(如电阻率、磁性、热电势和热导率)进行彻底的调查,以探索是否可以调整这些化合物的类电子状态以改善材料性能,以及这些不寻常的电子状态是否会产生任何意想不到的现象。此外,还将对这些材料进行光谱研究,以测试这些材料作为稳定的小带隙半导体用于光学应用的潜力。通过这些研究,应该可以开发出一个框架,更好地理解这类有趣的化合物。这项工作将得到开发同步辐射微晶学技术的支持,长期目标是从典型粉末样品中的微晶获得单晶衍射数据。非技术摘要:许多高科技设备的性能受到构成它们的固态材料的特性的限制。该项目将测试用于能源应用的固态材料设计的新策略,将理论计算直接纳入设计过程,以有效地发现改进的材料。该项目的主要目标是更好的热电材料,这些材料通过余热回收、卫星发电和高效固态制冷等方式应用于电力生产。正在研究的金属氧化物系统还可以为红外(IR)检测应用提供新的超导化合物和新的小带隙半导体,可以作为基于碲化镉汞化合物的当前系统的空气稳定和无毒替代。理解和执行材料的“内部设计”所需的基本合成、表征和理论技能将被整合到教学和推广工作中,因为它们提供了产生解决能源和其他社会挑战的材料所需的关键见解。特别强调结晶学,包括旨在解决典型学术课程中的不足之处和扩大对X射线和中子国家实验室设施实验的参与的国家教育努力。对所有级别对能源研究感兴趣的学生进行积极的研究指导将是这一努力的关键组成部分,包括纽约市大都市区的不同本科生和高中生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Khalifah其他文献

Pathways for practical high-energy long-cycling lithium metal batteries
实用高能长循环锂金属电池的途径
  • DOI:
    10.1038/s41560-019-0338-x
  • 发表时间:
    2019-02-25
  • 期刊:
  • 影响因子:
    60.100
  • 作者:
    Jun Liu;Zhenan Bao;Yi Cui;Eric J. Dufek;John B. Goodenough;Peter Khalifah;Qiuyan Li;Bor Yann Liaw;Ping Liu;Arumugam Manthiram;Y. Shirley Meng;Venkat R. Subramanian;Michael F. Toney;Vilayanur V. Viswanathan;M. Stanley Whittingham;Jie Xiao;Wu Xu;Jihui Yang;Xiao-Qing Yang;Ji-Guang Zhang
  • 通讯作者:
    Ji-Guang Zhang

Peter Khalifah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Khalifah', 18)}}的其他基金

Design of Ceramics with Isotropic Superionic Conductivity
各向同性超离子导电陶瓷的设计
  • 批准号:
    1708749
  • 财政年份:
    2017
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Standard Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Advanced functionality of metallic glasses with inhomogeneous local structures by gradient and asymmetric multidimensional control of relaxation states
通过弛豫状态的梯度和不对称多维控制实现具有不均匀局部结构的金属玻璃的高级功能
  • 批准号:
    23H00228
  • 财政年份:
    2023
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of a vibration control system using pulley mechanisms to maintain the functionality of a building during multiple earthquakes and windstorms.
开发使用滑轮机构的振动控制系统,以在多次地震和风暴期间保持建筑物的功能。
  • 批准号:
    23KJ1143
  • 财政年份:
    2023
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Job management system with dynamic traffic control functionality
具有动态流量控制功能的作业管理系统
  • 批准号:
    21K11912
  • 财政年份:
    2021
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exopolysaccharides producing strains to control yogurt functionality
产生胞外多糖的菌株可控制酸奶功能
  • 批准号:
    536620-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Collaborative Research and Development Grants
NSF-CAPACITY FIELD STATIONS: EXPANDING WALK-IN ENVIRONMENTAL CONTROL CHAMBER CAPACITY AND FUNCTIONALITY AT HIGHLANDS BIOLOGICAL STATION
NSF 能力现场站:扩大高地生物站步入式环境控制室的能力和功能
  • 批准号:
    2122771
  • 财政年份:
    2021
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Standard Grant
Exopolysaccharides producing strains to control yogurt functionality
产生胞外多糖的菌株可控制酸奶功能
  • 批准号:
    536620-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Collaborative Research and Development Grants
Design of surface state and spintronics functionality via Zak phase control
通过 Zak 相位控制设计表面态和自旋电子学功能
  • 批准号:
    20H01859
  • 财政年份:
    2020
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Extension of Control Functionality through the Integration of Container Technologies (ESIC)
通过容器技术集成扩展控制功能 (ESIC)
  • 批准号:
    420528256
  • 财政年份:
    2019
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Research Grants
Exopolysaccharides producing strains to control yogurt functionality
产生胞外多糖的菌株可控制酸奶功能
  • 批准号:
    536620-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Collaborative Research and Development Grants
Enhanced Functionality of Tunnel Magnetoresistive Devices by Interface Control of Fe3O4/Insulators
通过 Fe3O4/绝缘体的界面控制增强隧道磁阻器件的功能
  • 批准号:
    18H01465
  • 财政年份:
    2018
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了