Design of Ceramics with Isotropic Superionic Conductivity
各向同性超离子导电陶瓷的设计
基本信息
- 批准号:1708749
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Abstract:Within a Li-ion battery, the electrolyte facilitates the conduction of Li ions between the two electrodes (cathode and anode) that store energy. Better solid state electrolytes will enable the development of safer batteries with improved lifetimes, and have the potential to completely eliminate the flammability and toxicity associated with current organic electrolyte technologies for Li-ion batteries. This project will lead to the discovery of better solid state electrolytes both by evaluating new candidate compounds and by carrying out fundamental studies to better understand how Li ions diffuse through solid electrolytes. This work will be supported by diffraction studies at national user facilities that will allow the accurate determination of the crystal structure of solid electrolytes at the atomic scale, allowing the mechanism of ionic motion to be understood. This project will additionally support the training of young researchers in advanced structural characterization methods through a national summer school on structural analysis to be offered every year. The integration of solid state electrolytes into next-generation Li-ion batteries has the potential to completely eliminate battery fires, to extend the range and reduce the cost of electric vehicles, and to facilitate the integration of renewable energy sources into the electrical grid by providing low-cost load leveling.Technical Abstract:In the last 50 years, only about half a dozen structural families of superionic conductors for Li and Na ions have been discovered. A major goal of this proposal is the identification of new superionic conductors, an aim which will be supported by fundamental studies to identify and control the structural features that most directly influence the ionic conductivity. The development of improved solid state superionic conductors that can replace the organic liquid electrolytes (which are responsible for major flammability, toxicity, and lifetime issues) in current Li-ion battery systems will lead to safer batteries with improved lifetimes. Fundamental studies will be carried out to understand and optimize the conductivity of ions at room temperature within a special CUBICON ceramic host whose cubic symmetry allows ions to be transported equally well in all directions, unlike most other alternative systems. First, chemical syntheses (solid state and ion exchange) will be carried out to prepare a variety of single-phase CUBICON materials of known and novel compositions. Next, X-ray and neutron diffraction studies will be carried out to accurately locate the positions of atoms (enabling both qualitative estimates and quantitative calculations of the strength of bonding and mobility of ions). New in situ methods will be applied to determine ion exchange mechanisms relevant to their synthesis. Finally, physical properties measurements will be done to assess the ionic and electronic conductivity of these materials, and to identify design rules than can be used to prepare CUBICON materials with optimal properties.
非技术摘要:在锂离子电池中,电解质促进锂离子在两个电极(阴极和阳极)之间的传导,以储存能量。 更好的固态电解质将能够开发出更安全、寿命更长的电池,并有可能完全消除与当前锂离子电池有机电解质技术相关的易燃性和毒性。 该项目将通过评估新的候选化合物和进行基础研究来更好地了解锂离子如何通过固体电解质扩散,从而发现更好的固态电解质。 这项工作将得到国家用户设施的衍射研究的支持,这些研究将能够在原子尺度上准确确定固体电解质的晶体结构,从而了解离子运动的机制。 该项目还将通过每年举办的国家结构分析暑期学校,支持对年轻研究人员进行先进结构表征方法的培训。 将固态电解质集成到下一代锂离子电池中有可能完全消除电池火灾,延长电动汽车的续航里程并降低成本,并通过提供低成本的负载均衡来促进可再生能源与电网的集成。技术摘要:在过去的50年中,只有大约六个结构家族的锂离子和钠离子的超离子导体被发现。 该提案的一个主要目标是识别新的超离子导体,这一目标将得到基础研究的支持,以识别和控制最直接影响离子电导率的结构特征。 改进的固态超离子导体的开发可以取代当前锂离子电池系统中的有机液体电解质(其是主要的可燃性、毒性和寿命问题的原因),这将导致具有改进的寿命的更安全的电池。 将进行基础研究,以了解和优化离子在室温下在一个特殊的CUBICON陶瓷主机的立方对称性,使离子在所有方向上同样好地传输,不像大多数其他替代系统的电导率。 首先,将进行化学合成(固态和离子交换)以制备各种已知和新颖组成的单相CUBICON材料。 接下来,将进行X射线和中子衍射研究,以准确定位原子的位置(能够定性估计和定量计算离子的结合强度和迁移率)。新的原位方法将被应用于确定与其合成相关的离子交换机制。 最后,将进行物理性能测量,以评估这些材料的离子和电子电导率,并确定可用于制备具有最佳性能的CUBICON材料的设计规则。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Khalifah其他文献
Pathways for practical high-energy long-cycling lithium metal batteries
实用高能长循环锂金属电池的途径
- DOI:
10.1038/s41560-019-0338-x - 发表时间:
2019-02-25 - 期刊:
- 影响因子:60.100
- 作者:
Jun Liu;Zhenan Bao;Yi Cui;Eric J. Dufek;John B. Goodenough;Peter Khalifah;Qiuyan Li;Bor Yann Liaw;Ping Liu;Arumugam Manthiram;Y. Shirley Meng;Venkat R. Subramanian;Michael F. Toney;Vilayanur V. Viswanathan;M. Stanley Whittingham;Jie Xiao;Wu Xu;Jihui Yang;Xiao-Qing Yang;Ji-Guang Zhang - 通讯作者:
Ji-Guang Zhang
Peter Khalifah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Khalifah', 18)}}的其他基金
CAREER: Control of Functionality in Transition Metal Oxides with Metal-Metal Bonding
职业:通过金属-金属键控制过渡金属氧化物的官能度
- 批准号:
0955646 - 财政年份:2010
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
相似海外基金
Direct Measurement of Interfacial Energies in Ceramics
陶瓷界面能的直接测量
- 批准号:
2414106 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Optically Tunable Functional Nano-Coatings on Fly Ash-Based Ceramics
粉煤灰基陶瓷上的光学可调功能纳米涂层
- 批准号:
IM240100052 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Mid-Career Industry Fellowships
A hybrid Deep Learning-assisted Finite Element technique to predict dynamic failure evolution in advanced ceramics (DeLFE)
用于预测先进陶瓷动态失效演化的混合深度学习辅助有限元技术 (DeLFE)
- 批准号:
EP/Y004671/1 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Research Grant
Assessing the Sustainability of Best Available Technologies (BAT) for Craft Ceramics
评估工艺陶瓷最佳可用技术 (BAT) 的可持续性
- 批准号:
24K21046 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Fast and pressureless sintering of non-oxide ceramics using high-frequency electromagnetic induction effect
利用高频电磁感应效应快速无压烧结非氧化物陶瓷
- 批准号:
23K04432 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Rapid manufacturing and hierarchical structure control of porous ceramics using interparticle photo-cross-linkable emulsified slurries
使用颗粒间光交联乳化浆料快速制造多孔陶瓷并控制分层结构
- 批准号:
23KJ0984 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CREST HBCU-RISE: Preparation and Characterization of Ceramics Embedded with Nanostructures for Specialized Applications
CREST HBCU-RISE:用于特殊应用的嵌入纳米结构的陶瓷的制备和表征
- 批准号:
2331969 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323456 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Laser sintering of micro-macro composite ceramics for additive sintering technology
激光烧结微宏观复合陶瓷增材烧结技术
- 批准号:
23K17820 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)