CAREER:Topological and Strongly Correlated Electronic Phases
职业:拓扑和强相关电子相
基本信息
- 批准号:0955778
- 负责人:
- 金额:$ 42.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis CAREER award supports an integrated program of research and education in the theory of topological and strongly correlated electronic phases of matter. Topological phases constitute a new and rapidly broadening frontier in condensed matter physics. Their robustness against imperfections and disorder make them especially promising for certain applications. The PI proposes to use a combination of analytical and numerical methods, with an emphasis on the former, to study three classes of correlated electronic states of matter:1. Strongly interacting one-dimensional systems at zero and non-zero temperature. Particular emphasis will be placed on the regime of highly thermalized spin degrees of freedom. Various aspects of the so-called spin-incoherent Luttinger liquid will be studied. 2. Finite size effects in single and multi-layer fractional quantum Hall systems. Phases that realize non-Abelian quasi-particle statistics will receive the most attention and effort will be placed on developing proposals to experimentally identify their existence. 3. Quantum liquids and topological insulators. The PI proposes to study the role of spin-orbit coupling in the realization and stabilization of different types of matter exhibiting topological order. The educational focus of this proposal seeks to advance discovery, promote teaching in the sciences, broaden participation of under represented groups, and inform the broader public about the central role science plays in the well being of our society. These goals will be accomplished in a number of ways. Among them are:+ Outreach to high school students, particularly those from historically underrepresented groups. The PI will visit local Austin-area high schools with large Hispanic/Latino populations to interact with students and teachers.+ Mentoring of female scientists. The PI will participate in the University of Texas "Alice in Wonderland" summer program for talented female high school students interested in physics.+ Increasing the number of K-12 science teachers in Texas. The PI is actively involved in recruiting undergraduate students to a science education major.+ Undergraduate participation in research. The PI will supervise undergraduate students as they pursue research to provide them with a meaningful taste of life as a scientist.+ Partnership with local Austin high-tech industry. The PI will enhance contact with the private sector through collaborations with their scientists.+ Outreach to the broader public at Texas Natural Science Center. The PI plans public lectures to present research results in an exciting and informative way.NON-TECHNICAL SUMMARYThis CAREER award supports an integrated program of research and education in the theory of new states of matter. Atoms organize themselves in distinctly different ways in different materials. The carbon atoms in diamond are self-arranged differently than those in graphite giving rise to distinctly different properties. The precise mathematical concept of symmetry based on the how the crystal can be flipped, rotated, or moved in such a way that the crystal looks the same enables the classification of phases. This classification is sufficiently general to encompass crystals composed of atoms, as well as the phases of electrons in materials, for example magnetism or quantum mechanical states where electrons themselves organize into a crystal. The study of phases of electrons trapped in a plane and exposed to a strong magnetic field, concisely known as the quantum Hall effects, has expanded the concept of order. This classification is related to a branch of mathematics known as topology and the phases are said to exhibit topological order. Topological phases are robust against imperfections, deformations, and impurities. The PI will use advanced theoretical methods to study topological phases and how they arise. The PI will also study materials and systems which contain electrons that interact strongly with each other leading to complex correlations in their motions. The manipulation of topological phases may form the basis of new paradigms in computation and may contribute to future information technologies. The educational focus of this proposal seeks to advance discovery, promote teaching in the sciences, broaden participation of under represented groups, and inform the broader public about the central role science plays in the well being of our society. These goals will be accomplished in a number of ways. A few of them are:+ Outreach to high school students, particularly those from historically underrepresented groups. The PI will visit local Austin-area high schools with large Hispanic/Latino populations to interact with students and teachers.+ Mentoring of female scientists. The PI will participate in the University of Texas "Alice in Wonderland" summer program for talented female high school students interested in physics.+ Increasing the number of K-12 science teachers in Texas. The PI is actively involved in recruiting undergraduate students to a science education major.+ Undergraduate participation in research. The PI will supervise undergraduate students as they pursue research to provide them with a meaningful taste of life as a scientist.+ Partnership with local Austin high-tech industry. The PI will enhance contact with the private sector through collaborations with their scientists.+ Outreach to the broader public at Texas Natural Science Center. The PI plans public lectures to present research results in an exciting and informative way.
技术概述:该职业奖支持物质的拓扑和强相关电子相理论的综合研究和教育计划。在凝聚态物理中,拓扑相是一个新的、迅速扩展的前沿领域。它们对缺陷和无序的健壮性使它们在某些应用中特别有希望。PI建议使用解析和数值方法相结合的方法,重点是前者,来研究三类相关的物质电子状态:在零和非零温度下强相互作用的一维系统。特别强调的是高度热化的自旋自由度。将研究所谓的自旋非相干卢廷格液体的各个方面。2. 单层和多层分数量子霍尔系统的有限尺寸效应。实现非阿贝尔准粒子统计的相位将得到最多的关注,并将努力发展以实验确定其存在的建议。3. 量子液体和拓扑绝缘体。PI提出研究自旋轨道耦合在实现和稳定具有拓扑有序的不同类型物质中的作用。该提案的教育重点旨在推动科学发现,促进科学教学,扩大代表性不足群体的参与,并告知更广泛的公众科学在我们社会福祉中的核心作用。这些目标将通过多种方式实现。其中包括:+向高中生伸出援手,特别是那些历史上未被充分代表的群体。PI将访问奥斯汀地区拥有大量西班牙裔/拉丁裔人口的当地高中,与学生和教师互动。+女科学家的指导。PI将参加德克萨斯大学为对物理感兴趣的优秀女高中生举办的“爱丽丝梦游仙境”暑期项目。+增加德克萨斯州K-12科学教师的数量。PI积极参与招收科学教育专业的本科生。+本科生参与研究。PI将指导本科生进行研究,为他们提供作为科学家的有意义的生活体验。+与奥斯汀当地高科技产业合作。项目将通过与私营部门的科学家合作,加强与私营部门的联系。+德克萨斯州自然科学中心向更广泛的公众推广。PI计划公开讲座,以令人兴奋和信息丰富的方式展示研究成果。该职业奖支持物质新状态理论的综合研究和教育计划。在不同的材料中,原子以截然不同的方式组织自己。金刚石中的碳原子与石墨中的碳原子的自排列方式不同,从而产生了明显不同的性质。对称的精确数学概念是基于晶体如何翻转、旋转或以晶体看起来相同的方式移动,从而使相分类成为可能。这种分类足以涵盖由原子组成的晶体,以及材料中电子的相位,例如磁性或量子力学状态,其中电子本身组织成晶体。对被困在一个平面上并暴露在强磁场中的电子相的研究,简明地称为量子霍尔效应,扩展了秩序的概念。这种分类与被称为拓扑学的数学分支有关,并且相位被认为表现出拓扑顺序。拓扑相对缺陷、变形和杂质具有很强的抵抗能力。PI将使用先进的理论方法来研究拓扑相以及它们是如何产生的。PI还将研究含有电子的材料和系统,这些电子相互作用强烈,导致它们的运动具有复杂的相关性。拓扑阶段的操作可以形成计算新范式的基础,并可能有助于未来的信息技术。该提案的教育重点旨在推动科学发现,促进科学教学,扩大代表性不足群体的参与,并告知更广泛的公众科学在我们社会福祉中的核心作用。这些目标将通过多种方式实现。其中一些是:+向高中生伸出援手,特别是那些历史上未被充分代表的群体。PI将访问奥斯汀地区拥有大量西班牙裔/拉丁裔人口的当地高中,与学生和教师互动。+女科学家的指导。PI将参加德克萨斯大学为对物理感兴趣的优秀女高中生举办的“爱丽丝梦游仙境”暑期项目。+增加德克萨斯州K-12科学教师的数量。PI积极参与招收科学教育专业的本科生。+本科生参与研究。PI将指导本科生进行研究,为他们提供作为科学家的有意义的生活体验。+与奥斯汀当地高科技产业合作。项目将通过与私营部门的科学家合作,加强与私营部门的联系。+德克萨斯州自然科学中心向更广泛的公众推广。PI计划公开讲座,以令人兴奋和信息丰富的方式展示研究成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Fiete其他文献
Gregory Fiete的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Fiete', 18)}}的其他基金
Conference: Quantum materials in the post Covid-19 era
会议:后 Covid-19 时代的量子材料
- 批准号:
2207953 - 财政年份:2022
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Nonequilibrium Control of Magnetism and Topology Through Selective Phonon Excitations
通过选择性声子激发对磁性和拓扑的非平衡控制
- 批准号:
2114825 - 财政年份:2021
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
DMREF: Collaborative Research: Design and synthesis of novel materials for spin caloritronic devices
DMREF:合作研究:用于自旋热电子器件的新型材料的设计和合成
- 批准号:
1949701 - 财政年份:2019
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Design and synthesis of novel materials for spin caloritronic devices
DMREF:合作研究:用于自旋热电子器件的新型材料的设计和合成
- 批准号:
1729588 - 财政年份:2017
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Correlated Electron Systems with Strong Spin-orbit Coupling
具有强自旋轨道耦合的相关电子系统
- 批准号:
1507621 - 财政年份:2015
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
相似海外基金
Bulk-edge correspondence and symmetry of strongly correlated topological pump
强相关拓扑泵的体边对应和对称性
- 批准号:
23H01091 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Discovery and Characterization of Strongly Correlated Topological Materials
职业:强相关拓扑材料的发现和表征
- 批准号:
2236528 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
CAREER: GHz imaging of strongly correlated and topological phenomena in moire materials
职业:莫尔材料中强相关和拓扑现象的 GHz 成像
- 批准号:
2240114 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
Novel measures of thermalization and time-evolution of strongly correlated, disordered, and topological systems by nonlinear THz spectroscopy
通过非线性太赫兹光谱测量强相关、无序和拓扑系统的热化和时间演化的新方法
- 批准号:
2226666 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Topological response in strongly correlated materials
强相关材料中的拓扑响应
- 批准号:
569045-2022 - 财政年份:2022
- 资助金额:
$ 42.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Topological and critical states of matter in strongly correlated electronic systems
强相关电子系统中物质的拓扑和临界状态
- 批准号:
RGPIN-2019-04321 - 财政年份:2022
- 资助金额:
$ 42.5万 - 项目类别:
Discovery Grants Program - Individual
Physics of strongly-correlated topological spin-triplet superconductivity with uranium atom
铀原子强相关拓扑自旋三重态超导物理
- 批准号:
22H04933 - 财政年份:2022
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Topological and critical states of matter in strongly correlated electronic systems
强相关电子系统中物质的拓扑和临界状态
- 批准号:
RGPIN-2019-04321 - 财政年份:2021
- 资助金额:
$ 42.5万 - 项目类别:
Discovery Grants Program - Individual
Numerical study of the bulk-edge correspondence in strongly correlated higher-order topological insulators
强相关高阶拓扑绝缘体体边对应的数值研究
- 批准号:
21K03395 - 财政年份:2021
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological effects in strongly correlated quantum systems
强相关量子系统中的拓扑效应
- 批准号:
2447026 - 财政年份:2020
- 资助金额:
$ 42.5万 - 项目类别:
Studentship