CAREER: Hierarchical Self-Assembly of Biopolymers

职业:生物聚合物的分层自组装

基本信息

  • 批准号:
    0955776
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

ID: MPS/DMR/BMAT(7623) 0955776 PI: Dogic, Zvonimir ORG: Brandeis UniversityTitle: CAREER: Hierarchial Self-Assembly of BiopolymersINTELLECTUAL MERIT: Biopolymer-based materials are frequently organized into complex hierarchical structures that span multiple length scales ranging from nanometers to millimeters. The goal of this research is to elucidate pathways by which biopolymers self-assemble into macroscopic materials and relate the structure, mechanical and optical properties of these macroscopic materials to the underlying mesoscopic interactions and microscopic architecture of the constituent biopolymers. The proposal has two specific aims. The first aim is to determine how the continuum mesoscopic properties of individual biopolymers are affected by the mutations of the constituent proteins at the microscopic level. The second aim is focused on understanding the structure and interactions of macroscopic colloidal membranes. Here, attractive depletion interactions are used to assemble thousands of rods into an equilibrium membrane-like structure composed of a monolayer of aligned rods. These two experimental aims are related to each other in several important ways: They both require use of the same biopolymer model systems. They also involve similar experimental techniques and technologies. Finally, they explore the central theme of hierarchical assembly, with each aim focusing on a different level of hierarchy ranging from single filaments to assemblages containing thousands of filaments. Understanding biopolymer assemblages at any one level of hierarchy represents a significant advance in the field. However, only the combined understanding of structure and dynamics at all relevant length scales will result in general design principles required for a ?bottom up? engineering of novel nanostructured materials with predefined structural and mechanical properties. From a techniques perspective special emphasis is being placed on directly visualizing biopolymer assemblages at all levels of hierarchy. Using electron microscopy the PI will determine 3D conformations of biopolymers with nanometer resolution. With optical microscopy he will simultaneously visualize dynamics of individual filaments within an assemblages as well as the structure and dynamics of entire assemblages. BROADER IMPACTS: The research and education plans are seamlessly joined together through their mutual emphasis on visualization techniques and interdisciplinary approach to science. The proposed educational plan contains four related aims. Specifically, (1) the PI and collaborators will continue development of an interdisciplinary laboratory course focused on optical microscopy. Since microscopy is used in numerous disciplines; they will ensure that the course is accessible to students from all scientific backgrounds. (2) They will integrate students at all levels of education, ranging from high school students to advanced graduate students, into the ongoing vigorous research program. (3) They will develop a virtual online laboratory focused on the quantitative analysis of microscopy images. Students anywhere will be able to remotely download actual experimental data and perform all the subsequent image analysis and data reduction steps using custom written software. (4) Finally, they will develop a permanent exhibit at The Discovery Museum in Acton, Massachusetts, which will use optical microscopy to provide a glimpse into a highly dynamic world at microscopic length scales. Successful implementation of these four aims will result in a new generation of students who are better trained in the fundamentals of microscopy. It will also motivate young minds to pursue science related careers and increases awareness of the importance of scientific research and optical microscopy amongst the general audience.
ID:MPS/DMR/BMAT(7623)0955776 主要研究者:Dogic,Zvonimir ORG:布兰代斯大学名称:职业:生物聚合物的层次自组装智力优势:基于生物聚合物的材料经常被组织成复杂的层次结构,跨越从纳米到毫米的多个长度尺度。本研究的目标是阐明生物聚合物自组装成宏观材料的途径,并将这些宏观材料的结构,机械和光学性质与组成生物聚合物的介观相互作用和微观结构联系起来。该提案有两个具体目标。第一个目的是确定如何连续介观性质的个别生物聚合物的影响,在微观水平上的突变的组成蛋白质。 第二个目标是集中在理解宏观胶体膜的结构和相互作用。在这里,有吸引力的耗尽相互作用被用来组装成一个平衡的膜状结构,由一个单层的对齐杆杆的数以千计的杆。这两个实验目标在几个重要方面相互关联:它们都需要使用相同的生物聚合物模型系统。它们还涉及类似的实验技术和工艺。最后,他们探索了层次组装的中心主题,每个目标都集中在不同层次上,从单个细丝到包含数千个细丝的组装。了解生物聚合物组合在任何一个层次结构的水平代表了该领域的重大进展。然而,只有在所有相关的长度尺度的结构和动力学相结合的理解将导致一般的设计原则所需的?从下往上?设计具有预定结构和机械性能的新型纳米结构材料。从技术的角度来看,特别强调的是直接可视化生物聚合物组合在所有层次结构的水平。使用电子显微镜,PI将以纳米分辨率确定生物聚合物的3D构象。与光学显微镜,他将同时可视化动态的个别丝在一个集合体,以及整个集合体的结构和动态。 更广泛的影响:通过相互强调可视化技术和跨学科科学方法,研究和教育计划无缝地结合在一起。拟议的教育计划包含四个相关的目标。具体而言,(1)PI和合作者将继续开发以光学显微镜为重点的跨学科实验室课程。由于显微镜在许多学科中使用;他们将确保该课程可供来自所有科学背景的学生使用。(2)他们将把从高中生到高级研究生的各级教育的学生融入正在进行的充满活力的研究计划。(3)他们将开发一个虚拟在线实验室,专注于显微图像的定量分析。任何地方的学生都可以远程下载实际的实验数据,并使用定制的软件执行所有后续的图像分析和数据简化步骤。(4)最后,他们将在马萨诸塞州阿克顿的探索博物馆建立一个永久性展览,该展览将使用光学显微镜以微观尺度提供对高度动态世界的一瞥。这四个目标的成功实施将导致新一代的学生谁是更好地培训显微镜的基础知识。它还将激励年轻人追求与科学相关的职业,并提高公众对科学研究和光学显微镜重要性的认识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zvonimir Dogic其他文献

Active matter at the interface between materials science and cell biology
材料科学与细胞生物学界面处的活性物质
  • DOI:
    10.1038/natrevmats.2017.48
  • 发表时间:
    2017-07-20
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Daniel Needleman;Zvonimir Dogic
  • 通讯作者:
    Zvonimir Dogic
Starting Actin Filaments Anew - Adenomatous Polyposis Coli Is an Actin Nucleator
  • DOI:
    10.1016/j.bpj.2008.12.552
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kyoko Okada;Alexandra M. Deaconescu;James B. Moseley;Zvonimir Dogic;Nikolaus Grigorieff;Bruce L. Goode
  • 通讯作者:
    Bruce L. Goode
Stimuli-responsive self-regulating assembly of chiral colloids for robust size and shape control
用于稳健尺寸和形状控制的手性胶体的刺激响应自调节组装
  • DOI:
    10.1038/s41467-024-54217-x
  • 发表时间:
    2024-11-15
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Shuxu Wang;Louis Kang;Péter Salamon;Xiang Wang;Noriyuki Uchida;Fumito Araoka;Takuzo Aida;Zvonimir Dogic;Yasuhiro Ishida
  • 通讯作者:
    Yasuhiro Ishida
From Extensile Microtubules Bundles to Synthetic Cilia and Self-Mixing Active Gels
  • DOI:
    10.1016/j.bpj.2013.11.103
  • 发表时间:
    2014-01-28
  • 期刊:
  • 影响因子:
  • 作者:
    Zvonimir Dogic
  • 通讯作者:
    Zvonimir Dogic

Zvonimir Dogic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zvonimir Dogic', 18)}}的其他基金

Assembly, disassembly, and mechanics of porous colloidal vesicles
多孔胶体囊泡的组装、拆卸和力学
  • 批准号:
    2308537
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Synthetic machines from feedback-controlled active matter
合作研究:DMREF:反馈控制活性物质的合成机器
  • 批准号:
    2324194
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
ISS: Active Liquid-Liquid Phase Separation in Microgravity
ISS:微重力下的主动液-液相分离
  • 批准号:
    2224350
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Engineering of Active Stress in Biomaterials
合作研究:生物材料主动应力的多尺度工程
  • 批准号:
    2004617
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Topological shape transitions of colloidal membranes
胶体膜的拓扑形状转变
  • 批准号:
    1905384
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
2017 GRC Soft Condensed Matter Physics: In and Out of equilibrium
2017 GRC 软凝聚态物理:平衡与失平衡
  • 批准号:
    1742940
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Colloidal membranes and assembly of heterogeneous 2D materials
胶体膜和异质二维材料的组装
  • 批准号:
    1759204
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Colloidal membranes and assembly of heterogeneous 2D materials
胶体膜和异质二维材料的组装
  • 批准号:
    1609742
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Building Cellular Complexity: from Molecular Motors to Synthetic Cilia
构建细胞复杂性:从分子马达到合成纤毛
  • 批准号:
    1329623
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics and Structural Polymorphism of Bacterial Flagellar Assemblies
合作研究:细菌鞭毛组件的力学和结构多态性
  • 批准号:
    1068566
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

丙烷脱氢Pt@hierarchical zeolite催化剂的设计制备与反应调控
  • 批准号:
    22178062
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目

相似海外基金

Deciphering and Directing Hierarchical Self-Assembly in Hybrid Chiral Films
破译和指导混合手性薄膜中的分层自组装
  • 批准号:
    2344586
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Hierarchical Self-Assembly of 2D DNA Platform for Multi-Scale Nanoarray
多尺度纳米阵列2D DNA平台的分层自组装
  • 批准号:
    23K13646
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Rational construction of hierarchical self-organized structures based on phase separation from transient condensates containing biopolymers
基于含有生物聚合物的瞬态冷凝物的相分离的分层自组织结构的合理构建
  • 批准号:
    22H02202
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Synthesis and Hierarchical Self-Assembly of Polyelectrolytes via Crystallization Driven Self Assembly
通过结晶驱动自组装聚电解质的合成和分级自组装
  • 批准号:
    557381-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Construction of life-like supramolecular materials based on hierarchical self-assembly
基于分层自组装构建逼真超分子材料
  • 批准号:
    22H02195
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Stimuli-Responsive Self-Assembly of Supramolecular Block Copolymers: Hierarchical Structures and Kinetic Pathways
职业:超分子嵌段共聚物的刺激响应自组装:层次结构和动力学途径
  • 批准号:
    2144997
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Synthesis and Hierarchical Self-Assembly of Polyelectrolytes via Crystallization Driven Self Assembly
通过结晶驱动自组装聚电解质的合成和分级自组装
  • 批准号:
    557381-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Multi-Scale Micromechanical Properties of Hierarchical Coatings and Interfaces Fabricated by Self-Limiting Electrospray Deposition
合作研究:自限性电喷雾沉积制备的分层涂层和界面的多尺度微机械性能
  • 批准号:
    2019928
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Hierarchical Self-Assembly of Electronically Functional Polymer Nanostructures
电子功能聚合物纳米结构的分层自组装
  • 批准号:
    519110-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: Multi-Scale Micromechanical Properties of Hierarchical Coatings and Interfaces Fabricated by Self-Limiting Electrospray Deposition
合作研究:自限性电喷雾沉积制备的分层涂层和界面的多尺度微机械性能
  • 批准号:
    2019849
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了