Phage-encoded Shiga Toxin as a Bacterial Defense Against Predation: Shiga Toxin Induction, Uptake and Toxicity in Tetrahymena Thermophila

噬菌体编码的志贺毒素作为细菌防御捕食的手段:嗜热四膜虫的志贺毒素诱导、摄取和毒性

基本信息

  • 批准号:
    0956454
  • 负责人:
  • 金额:
    $ 84.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-03-01 至 2015-02-28
  • 项目状态:
    已结题

项目摘要

Intellectual meritExotoxins of bacteria are among the most deadly substances known. These exotoxins kill eukaryotic cells by inactivating factors and/or pathways that are universally conserved among eukaryotic organisms. When studied in the context of mammals, these toxins cause diseases ranging from cholera to diphtheria to enterohemorrhagic diarrhea. The genes encoding these toxins are usually encoded by viruses of bacteria (bacteriophages). Environmental DNA sequencing (metagenomic analyses) indicates that ~15% of all bacteriophage (both free and incorporated into bacteria) encode an exotoxin gene. With approximately 106 bacteriophages /mL of seawater and 108 bacteriophages/gram of sediment, the frequency of occurrence of the genes encoding any particular exotoxin gene in bacteriophage far exceeds the number of potential animal hosts. Moreover, these bacteriophage-encoded exotoxin genes are found at high frequency in phages isolated from environments where the corresponding human diseases are not prevalent. These observations suggest the hypothesis that humans and other susceptible mammals are neither the original nor primary targets of these toxins. Hence any anthropogenic effects on the evolution of these toxins may not be as significant as those that occurred before the dawn of man and other multicellular organisms. If not mammals, then "who" are the true targets of the ubiquitous exotoxins. A major source of bacterial mortality is consumption by single-celled eukaryotic predators, such as ciliates and other protozoa. Bacteria have evolved many different methods to fend off these predators, including becoming oversized and fleeing at high speeds. Coordinated release of phage-encoded exotoxins, either at the pre- or post-ingestional states via lytic induction of lysogenic bacteriophage comprises another possible antipredator defense strategy. Protozoa are phagocytotic cells and they share many features with mammalian phagocytes, especially macrophages. The phage-encoded exotoxins like the well-studied Shiga toxin (Stx), kill eukaryotic cells by attacking features and pathways that are common to all eukaryotes both, uni- and multi-cellular. Since predation by eukaryotic predators (e.g., ciliates and other protozoa), is a major source of bacterial mortality, these observations suggest that exotoxins may have arisen as part of an antipredator, (antiprotozoan) defense strategy. Thus the evolution of these toxins may have occurred before the appearance of multicellular organisms. Hence humans may be innocent bystanders in the evolutionary battle between protozoans and their bacterial prey.Using a naturally occurring predator-prey interaction, the studies in this project explore aspects of how bacteriophage-encoded exotoxins like Shiga toxin are used as part of the bacterial anti-predator arsenal. These studies will provide the molecular details of the bacterial response to predation by determining 1) how T. thermophila signals bacteria that are lysogenic for toxin-encoding phages to produce Shiga toxin and 2) how this exotoxin enters and causes cytotoxicity in these ciliates. Some of these mechanisms are apparently unique to the ciliates and others may be conserved in higher eukaryotes. Broader Impacts The proposed research will provide a hypothesis-driven research experience to both graduate and undergraduate students at the University at Buffalo institution and through collaborations, undergraduate students at Mercyhurst College, a small, liberal arts college located in Erie, PA. In the Koudelka lab, students have learned how to ask important biological questions and used their observations to make important contributions to scientific understanding. Dr. Koudelka has supervised 22 undergraduates and high school students in the last 15 years, 50% of which were members of underrepresented minority groups or women. All of the PI's trainees have gone on to successful careers in research or medicine. The results of these studies will help define how predation and bacterial responses to it, influence the evolution and structure of microbial communities.
细菌的外毒素是已知的最致命的物质之一。这些外毒素通过使真核生物体中普遍保守的因子和/或途径失活来杀死真核细胞。当在哺乳动物中进行研究时,这些毒素会引起从霍乱到白喉到肠出血性腹泻的疾病。编码这些毒素的基因通常由细菌病毒(噬菌体)编码。环境DNA测序(宏基因组分析)表明,约15%的所有噬菌体(游离和掺入细菌)编码外毒素基因。每毫升海水中大约有106个噬菌体,每克沉积物中大约有108个噬菌体,噬菌体中编码任何特定外毒素基因的基因的出现频率远远超过潜在动物宿主的数量。此外,这些噬菌体编码的外毒素基因在从相应的人类疾病不流行的环境中分离的细菌中以高频率被发现。这些观察结果表明,人类和其他易感哺乳动物既不是这些毒素的原始目标,也不是主要目标。因此,人类活动对这些毒素演变的影响可能不像人类和其他多细胞生物出现之前那样显著。如果不是哺乳动物,那么“谁”是无处不在的外毒素的真正目标。细菌死亡的一个主要来源是被单细胞真核捕食者,如纤毛虫和其他原生动物消耗。细菌已经进化出许多不同的方法来抵御这些捕食者,包括变得过大和高速逃跑。协调释放的噬菌体编码的外毒素,无论是在摄入前或后的状态,通过溶原性噬菌体裂解诱导包括另一种可能的抗捕食防御策略。原生动物是吞噬细胞,它们与哺乳动物的吞噬细胞,特别是巨噬细胞有许多共同的特征。噬菌体编码的外毒素,如充分研究的滋贺毒素(Stx),通过攻击所有真核生物(单细胞和多细胞)共有的特征和途径来杀死真核细胞。由于真核生物捕食者的捕食(例如,纤毛虫和其他原生动物)是细菌死亡的主要来源,这些观察结果表明,外毒素可能是作为抗捕食者(抗原生动物)防御策略的一部分而出现的。因此,这些毒素的进化可能发生在多细胞生物出现之前。因此,在原生动物和它们的细菌猎物之间的进化战中,人类可能是无辜的旁观者。利用自然发生的捕食者-猎物相互作用,本项目的研究探索了噬菌体编码的外毒素(如滋贺毒素)如何被用作细菌抗捕食者武器库的一部分。这些研究将通过确定1)T。嗜热菌发出信号的细菌是溶原性的毒素编码细菌以产生滋贺毒素,和2)这种外毒素如何进入这些纤毛虫并在这些纤毛虫中引起细胞毒性。这些机制中的一些显然是纤毛虫所独有的,而另一些可能在高等真核生物中是保守的。更广泛的影响-拟议的研究将提供一个假设驱动的研究经验,在大学的研究生和本科生在布法罗机构,并通过合作,本科生在Mercyhurst学院,一个小的,文科学院位于宾夕法尼亚州伊利。在Koudelka实验室,学生们学会了如何提出重要的生物学问题,并利用他们的观察为科学理解做出重要贡献。Koudelka博士在过去15年中指导了22名本科生和高中生,其中50%是代表性不足的少数群体或妇女。PI的所有学员都在研究或医学领域取得了成功。这些研究的结果将有助于确定捕食和细菌对其的反应如何影响微生物群落的进化和结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerald Koudelka其他文献

Gerald Koudelka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerald Koudelka', 18)}}的其他基金

Collaborative Research: Evolutionary trends and ecological drivers of eye reduction in bat flies (Hippoboscoidea)
合作研究:蝙蝠蝇(河马总科)眼睛减少的进化趋势和生态驱动因素
  • 批准号:
    1556577
  • 财政年份:
    2016
  • 资助金额:
    $ 84.62万
  • 项目类别:
    Standard Grant
Allosteric Effects of DNA on Bacteriophage 434 Repressor Function
DNA 对噬菌体 434 阻遏物功能的变构作用
  • 批准号:
    0239000
  • 财政年份:
    2003
  • 资助金额:
    $ 84.62万
  • 项目类别:
    Continuing Grant

相似海外基金

Ruthenium catalysed C-H functionalization for the construction of DNA-Encoded Libraries
钌催化的 C-H 功能化用于构建 DNA 编码文库
  • 批准号:
    EP/Z001404/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.62万
  • 项目类别:
    Fellowship
EAGER: A Novel Hybrid Light-Field and High-Energy Pulse Color and Depth Encoded Illumination PIV Technique for Unsteady Flow Analyses
EAGER:一种用于非稳态流分析的新型混合光场和高能脉冲颜色和深度编码照明 PIV 技术
  • 批准号:
    2418485
  • 财政年份:
    2024
  • 资助金额:
    $ 84.62万
  • 项目类别:
    Standard Grant
Deciphering the molecular mechanism of GESENI (GEne Silencing based on ENcoded protein's Intracellular localization) in Arabidopsis sperm cells
破译拟南芥精子细胞中GESENI(基于编码蛋白细胞内定位的基因沉默)的分子机制
  • 批准号:
    24K18143
  • 财政年份:
    2024
  • 资助金额:
    $ 84.62万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of optical probes based on encoded aptamers for RNA visualization in live cells
开发基于编码适体的光学探针,用于活细胞中 RNA 可视化
  • 批准号:
    2886771
  • 财政年份:
    2023
  • 资助金额:
    $ 84.62万
  • 项目类别:
    Studentship
EDGE CMT: Defining the cost of mutation in nuclear encoded tRNAs
EDGE CMT:定义核编码 tRNA 的突变成本
  • 批准号:
    2319796
  • 财政年份:
    2023
  • 资助金额:
    $ 84.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: RNA-encoded Molecular Memory (REMM)
合作研究:创意实验室:RNA 编码的分子记忆 (REMM)
  • 批准号:
    2243700
  • 财政年份:
    2023
  • 资助金额:
    $ 84.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: RNA-encoded Molecular Memory (REMM)
合作研究:创意实验室:RNA 编码的分子记忆 (REMM)
  • 批准号:
    2243698
  • 财政年份:
    2023
  • 资助金额:
    $ 84.62万
  • 项目类别:
    Standard Grant
Pharmacokinetics-Based DNA-Encoded Library Screening
基于药代动力学的 DNA 编码文库筛选
  • 批准号:
    10644211
  • 财政年份:
    2023
  • 资助金额:
    $ 84.62万
  • 项目类别:
Metal-free, genetically encoded reporters for calcium recording with MRI
用于 MRI 钙记录的无金属基因编码报告基因
  • 批准号:
    10660042
  • 财政年份:
    2023
  • 资助金额:
    $ 84.62万
  • 项目类别:
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
  • 批准号:
    10562265
  • 财政年份:
    2023
  • 资助金额:
    $ 84.62万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了