Collaborative Research:EAGER:Deep Architectures for Speech and Audio Processing
合作研究:EAGER:语音和音频处理的深度架构
基本信息
- 批准号:0957742
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-01-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent studies have demonstrated the powerful abilities of deep architectures for statistical pattern recognition. Deep architectures transform their inputs through multiple layers of nonlinear processing. Inspired by the connectivity of biological neural networks, the hidden layers of deep architectures encode hierarchical, distributed representations of complex sensory input. Theoretical results suggest that such representations are needed to solve the most difficult problems of artificial intelligence.Previous applications of deep architectures include visual object recognition, statistical language modeling, and nonlinear dimensionality reduction. Building on these successes, this project develops new applications of deep architectures for problems in speech and audio processing. Current front ends for these problems are dominated by traditional methods in statistical modeling and signal processing. Deep architectures have the potential to overcome many limitations of current approaches.This project has two research components with interrelated and overlapping goals. The project's first component explores unsupervised learning in convolutional neural networks. The goal of learning in these networks is to discover new features for audio event detection and automatic speech recognition. The project's second component investigates the possibility of deep learning in kernel machines. This possibility is suggested by a recently discovered family of kernel functions that mimic the computation in large, multilayer networks.The project's research components are tightly integrated with its educational activities. The project supports two graduate students, including one female student. An important goal is to develop publicly available software for use by other researchers.
最近的研究表明,深层结构具有强大的统计模式识别能力。深层体系结构通过多层非线性处理来转换其输入。受生物神经网络连通性的启发,深层结构的隐藏层编码复杂感觉输入的分层、分布式表示。理论结果表明,这种表示是解决人工智能中最困难的问题所必需的。以前深层体系结构的应用包括视觉对象识别、统计语言建模和非线性降维。在这些成功的基础上,该项目开发了针对语音和音频处理问题的深层体系结构的新应用。目前解决这些问题的前端主要是传统的统计建模和信号处理方法。深层体系结构有可能克服当前方法的许多限制。这个项目有两个研究组成部分,它们的目标相互关联和重叠。该项目的第一部分探索卷积神经网络中的无监督学习。在这些网络中学习的目标是发现音频事件检测和自动语音识别的新特征。该项目的第二部分调查了在内核机器中进行深度学习的可能性。最近发现的一系列核函数模拟了大型多层网络中的计算,表明了这种可能性。该项目的研究部分与其教育活动紧密结合。该项目支持两名研究生,其中包括一名女学生。一个重要的目标是开发公开可用的软件,供其他研究人员使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fei Sha其他文献
Systematic Generalization on gSCAN: What is Nearly Solved and What is Next?
gSCAN 的系统化概括:什么即将解决,下一步是什么?
- DOI:
10.18653/v1/2021.emnlp-main.166 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Linlu Qiu;Hexiang Hu;Bowen Zhang;Peter Shaw;Fei Sha - 通讯作者:
Fei Sha
Wildfire smoke exposure worsens students’ learning outcomes
野火烟雾暴露会恶化学生的学习成果
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:27.6
- 作者:
Qing Wang;M. Ihme;R. Linn;Yi;V. Yang;Fei Sha;C. Clements;Jenna S. McDanold;John Anderson - 通讯作者:
John Anderson
The Music Retrieval System Based on the Frequently-Used Rules of Chinese Text
基于中文文本常用规则的音乐检索系统
- DOI:
10.4028/www.scientific.net/amm.644-650.2438 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Fei Sha;Ying Li;Z. Lv;Jun Yu Li - 通讯作者:
Jun Yu Li
Efficient Discovery of Optimal N-Layered TMDC Hetero-Structures
有效发现最佳 N 层 TMDC 异质结构
- DOI:
10.1557/adv.2018.260 - 发表时间:
2018 - 期刊:
- 影响因子:0.8
- 作者:
Lindsay Bassman;P. Rajak;R. Kalia;A. Nakano;Fei Sha;Muratahan Aykol;P. Huck;K. Persson;Ji;David J. Singh;P. Vashishta - 通讯作者:
P. Vashishta
Pre-computed memory or on-the-fly encoding? A hybrid approach to retrieval augmentation makes the most of your compute
预先计算的内存还是即时编码?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Michiel de Jong;Yury Zemlyanskiy;Nicholas FitzGerald;J. Ainslie;Sumit K. Sanghai;Fei Sha;W. Cohen - 通讯作者:
W. Cohen
Fei Sha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fei Sha', 18)}}的其他基金
RI: Medium: Collaborative Research: Learning to Su
RI:媒介:协作研究:学习苏
- 批准号:
1632803 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Learning to Summarize User-Generated Video
RI:媒介:协作研究:学习总结用户生成的视频
- 批准号:
1513966 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
EAGER: Leveraging Structure to Realize the Promise of Transfer Learning
EAGER:利用结构实现迁移学习的承诺
- 批准号:
1451412 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Semantically Discriminative: Guiding Mid-Level Representations for Visual Object Recognition with External Knowledge
RI:媒介:协作研究:语义判别:利用外部知识指导视觉对象识别的中级表示
- 批准号:
1065243 - 财政年份:2011
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant