Novel acquisition and computation in vibrational spectroscopic imaging

振动光谱成像中的新颖采集和计算

基本信息

  • 批准号:
    0957849
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-15 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

Prof. Rohit Bhargava and his interdisciplinary team at the University of Illinois are supported by the Chemical Measurement and Imaging Program in the Division of Chemistry to develope comprehensive and innovative methods for extracting knowledge from chemical imaging (CI) by (i) improving CI data both in time (by compressed sensing) and in signal-to-noise ratio (by noise reduction); (ii) developing novel data analysis algorithms that synergistically process spatial and spectral information; and (iii) extracting information about complex patterns and natural interactions that cannot be discerned currently by examination of structure alone. The approaches are being optimized on existing FT-IR and Raman imaging systems, and applied to study structure evolution in complex human tissues during malignant transformation. Imaging has traditionally focused on visualizing structure. This project broadly focuses on effectively visualizing the chemistry of materials by enhancing theory and computation in the emerging area of CI. The data enhancement approaches developed in this project will be broadly applicable to multiple analytical techniques and to all fields of application. Hence, the project is expected to widely accelerate scientific discovery and technological progress in, for example, materials science (e.g. in polymer composites), biological sciences (e.g. in lethal cancer transformation), and forensics (e.g. detecting prints). The developed tools and educational activities will enhance infrastructure and help build the national and international CI community. Tools and dissemination proposed here will help build partnerships between CI, computational, and biomedical scientists - allowing for rapid dissemination of results to industry and other practitioners. The project will train a diverse group of undergraduate and graduate students in cross-disciplinary science, including mathematics, physics, chemistry, engineering, biology, and computing. Underrepresented groups will be involved and nurtured into this emerging area by sustained mentoring. Finally, the developed techniques are expected to be translated to commercial instruments, contributing to widespread use.
Rohit Bhargava 教授和他在伊利诺伊大学的跨学科团队得到了化学系化学测量和成像项目的支持,开发了从化学成像 (CI) 中提取知识的全面创新方法,方法是:(i) 改进 CI 数据的时间(通过压缩传感)和信噪比(通过降噪); (ii) 开发协同处理空间和光谱信息的新型数据分析算法; (iii) 提取目前仅通过结构检查无法辨别的复杂模式和自然相互作用的信息。这些方法正在现有的 FT-IR 和拉曼成像系统上进行优化,并应用于研究复杂人体组织在恶性转化过程中的结构演化。成像传统上侧重于结构的可视化。该项目主要致力于通过增强 CI 新兴领域的理论和计算来有效地可视化材料化学。该项目开发的数据增强方法将广泛适用于多种分析技术和所有应用领域。因此,该项目预计将广泛加速材料科学(例如聚合物复合材料)、生物科学(例如致死性癌症转化)和法医学(例如检测指纹)等领域的科学发现和技术进步。开发的工具和教育活动将增强基础设施并帮助建立国内和国际 CI 社区。这里提出的工具和传播将有助于在 CI、计算和生物医学科学家之间建立伙伴关系,从而能够将结果快速传播给行业和其他从业者。该项目将培养跨学科科学领域的多元化本科生和研究生,包括数学、物理、化学、工程、生物学和计算机。代表性不足的群体将通过持续的指导参与并培育进入这一新兴领域。最后,所开发的技术预计将转化为商业仪器,有助于广泛使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rohit Bhargava其他文献

Organizational Breast Cancer Data Mart: A Solution for Assessing Outcomes of Imaging and Treatment.
组织乳腺癌数据集市:评估影像和治疗结果的解决方案。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Margarita L Zuley;Jonathan Silverstein;Durwin Logue;Richard S Morgan;Rohit Bhargava;Priscilla F. McAuliffe;A. Brufsky;Andriy I Bandos;Robert M. Nishikawa
  • 通讯作者:
    Robert M. Nishikawa
Glioblastoma drives protease-independent extracellular matrix invasion of microglia
胶质母细胞瘤驱动小胶质细胞蛋白酶非依赖性细胞外基质侵袭。
  • DOI:
    10.1016/j.mtbio.2025.101475
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    10.200
  • 作者:
    Chia-Wen Chang;Ashwin Bale;Rohit Bhargava;Brendan A.C. Harley
  • 通讯作者:
    Brendan A.C. Harley
P7 Is mismatch repair status prognostic of clinical outcomes in patients with early stage endometrioid endometrial cancer?
P7 错配修复状态是否是早期子宫内膜样子宫内膜癌患者临床结局的预后指标?
  • DOI:
    10.1016/j.ygyno.2023.05.034
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Phillip Pifer;Sruthi Jaishankar;Rohit Bhargava;Andrew Keller;Michael Cohen;Paniti Sukumvanich;Madeleine Courtney-Brooks;Michelle Boisen;Jessica Berger;Sarah Taylor;Alexander Olawaiye;Jamie Lesnock;Robert Edwards;Sushil Beriwal;John Vargo
  • 通讯作者:
    John Vargo
Magee equations and oncotype DX®-a perspective
  • DOI:
    10.1007/s10549-017-4235-3
  • 发表时间:
    2017-04-09
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Rohit Bhargava;David J. Dabbs
  • 通讯作者:
    David J. Dabbs
Not All HER2-Positive Breast Cancers Are the Same: Intratumoral Heterogeneity, Low-Level HER2 Amplification, and Their Impact on Neoadjuvant Therapy Response
并非所有HER2阳性乳腺癌都相同:瘤内异质性、低水平HER2扩增及其对新辅助治疗反应的影响
  • DOI:
    10.1016/j.modpat.2025.100785
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Wenli Dai;Olga Navolotskaia;Jeffrey L. Fine;Lakshmi Harinath;Samaneh A. Motanagh;Tatiana M. Villatoro;Rohit Bhargava;Beth Z. Clark;Jing Yu
  • 通讯作者:
    Jing Yu

Rohit Bhargava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rohit Bhargava', 18)}}的其他基金

Collaborative Research: Real time Chemical Imaging of Nanoparticle Templated Tubulin-Polymerization
合作研究:纳米颗粒模板化微管蛋白聚合的实时化学成像
  • 批准号:
    2153032
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似海外基金

Research Infrastructure: MRI: Track 2 Acquisition of Data Observation and Computation Collaboratory (DOCC)
研究基础设施:MRI:数据观察和计算合作实验室 (DOCC) 的轨道 2 采集
  • 批准号:
    2320261
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Investigating Symbolic Computation in the Brain: Neural Mechanisms of Compositionality
研究大脑中的符号计算:组合性的神经机制
  • 批准号:
    10644518
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Study on knowledge acquisition from fitness landscape for evolutionary computation
用于进化计算的适应度景观知识获取研究
  • 批准号:
    19J11792
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Computation/Statistics
计算/统计
  • 批准号:
    10440293
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
BIGDATA: F: Collaborative Research: Acquisition, Collection and Computation of Dynamic Big Sensory Data in Smart Cities
BIGDATA:F:协作研究:智慧城市动态大传感数据的采集、收集和计算
  • 批准号:
    1851197
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Acquisition, Collection and Computation of Dynamic Big Sensory Data in Smart Cities
BIGDATA:F:协作研究:智慧城市动态大传感数据的采集、收集和计算
  • 批准号:
    1741277
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Computation/Statistics
计算/统计
  • 批准号:
    10198884
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
BIGDATA: F: Collaborative Research: Acquisition, Collection and Computation of Dynamic Big Sensory Data in Smart Cities
BIGDATA:F:协作研究:智慧城市动态大传感数据的采集、收集和计算
  • 批准号:
    1741338
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Acquisition, Collection and Computation of Dynamic Big Sensory Data in Smart Cities
BIGDATA:F:协作研究:智慧城市动态大传感数据的采集、收集和计算
  • 批准号:
    1741279
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Acquisition, Collection and Computation of Dynamic Big Sensory Data in Smart Cities
BIGDATA:F:协作研究:智慧城市动态大传感数据的采集、收集和计算
  • 批准号:
    1741287
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了