BIGDATA: F: Collaborative Research: Acquisition, Collection and Computation of Dynamic Big Sensory Data in Smart Cities
BIGDATA:F:协作研究:智慧城市动态大传感数据的采集、收集和计算
基本信息
- 批准号:1851197
- 负责人:
- 金额:$ 19.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-16 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ubiquity of information-sensing devices has opened up abundant sources for Big Sensory Data (BSD), which span over Internet of Things, wireless sensor networks, RFID, cyber physical systems, to name a few. Such diverse BSD-rich systems are the building blocks for smart cities where smart devices are deployed in every corner of a city. The analytical use of BSD is essential to smart cities in managing a city's assets and monitoring air conditions, pollution, climate change, traffic, security and safety, etc. The high demand for smart cities and the pivotal role of sensing devices in smart cities accelerate the explosion of BSD. Unfortunately, the size and dynamic nature of BSD overwhelm current capability to capture, store, search, mine and visualize BSD, and hence have become a major hindrance to the widespread development of smart city applications. To tackle these challenges, this project will investigate fundamental issues regarding acquisition, collection and computation of BSD with principled quality control. The goal is to cost-effectively collect and manage BSD for efficient utilization in smart city applications. A set of foundational principles, algorithms and tools for BSD management will be developed in response to the four challenging characteristics of BSD, which are large scale, correlated dynamics, mode diversity and low quality. The outcomes of this research will contribute to the vision of smart and resilient cities, which broadly impact the nation's emerging smart city infrastructure and citizens' mobile quality of life. This project also offers an opportunity to collaborate with the Government of the District of Columbia on the Smarter DC Initiative, and hence impacts not only the research community but also the society at large. This project aims at tackling major challenges in task-cognizant BSD management at the critical phase of data acquisition, collection and computation. The overarching goal is to alleviate the high computational cost and improve the utilization efficiency of BSD in smart city applications. First, approximate BSD acquisition methods will be developed that automatically adjust the sensing frequency based on the changing trend of the physical world. Such acquisition methods can effectively reduce the data volume at an early stage during periodic and long-term monitoring of smart cities. Second, approximate sampling algorithms, knowledge discovery methods, and integration methods will be developed for task-specific multimodal BSD, in order to reduce the transmission cost associated with delivering otherwise raw and redundant BSD from sensing devices to end users. Finally, new metrics for evaluating BSD quality will be investigated and then applied to properly assess the tolerance of low-quality BSD and provide deep understanding of the fundamental impact of data quality on various design aspects of BSD acquisition, collection and computation. Besides theoretical analysis, simulation and experimental studies will be carried out on real BSD, including experimentation on real-world Smart City projects at Washington DC. The corresponding code, datasets, and educational materials will be released via a dedicated project website.
信息传感设备的普遍存在为大感知数据(BSD)开辟了丰富的来源,这些数据跨越物联网,无线传感器网络,RFID,网络物理系统等。这种多样化的BSD丰富系统是智能城市的构建模块,智能设备部署在城市的每个角落。BSD的分析使用对于智慧城市管理城市资产和监测空气状况,污染,气候变化,交通,安全和安全等至关重要,对智慧城市的高需求以及传感设备在智慧城市中的关键作用加速了BSD的爆炸式增长。不幸的是,BSD的规模和动态特性压倒了当前捕获、存储、搜索、挖掘和可视化BSD的能力,因此成为智慧城市应用广泛发展的主要障碍。为了应对这些挑战,本项目将研究有关BSD的获取,收集和计算的基本问题,并进行原则性的质量控制。我们的目标是经济高效地收集和管理BSD,以便在智慧城市应用中高效利用。针对BSD系统的大规模、动态关联、模式多样性和低质量这四个具有挑战性的特点,提出了一套BSD系统管理的基本原则、算法和工具。这项研究的成果将有助于实现智能和弹性城市的愿景,这将广泛影响国家新兴的智能城市基础设施和公民的移动的生活质量。该项目还提供了一个机会,与哥伦比亚哥伦比亚特区政府合作的智能DC倡议,因此不仅影响研究界,而且整个社会。该项目旨在解决在数据采集,收集和计算的关键阶段任务认知BSD管理的主要挑战。总体目标是减轻高计算成本,提高BSD在智慧城市应用中的利用效率。首先,将开发基于物理世界的变化趋势自动调整感测频率的近似BSD采集方法。这种采集方法可以在智能城市的周期性和长期监测过程中有效地减少早期阶段的数据量。其次,近似采样算法,知识发现方法和集成方法将开发特定任务的多模式BSD,以减少传输成本与提供其他原始和冗余BSD从传感设备到最终用户。最后,新的衡量BSD质量的指标将进行调查,然后应用于适当评估低质量的BSD的容忍度,并提供深入的了解数据质量的基本影响BSD的采集,收集和计算的各个设计方面。除了理论分析外,还将对真实的BSD进行模拟和实验研究,包括在华盛顿DC的真实智能城市项目上进行实验。相应的代码、数据集和教育材料将通过专门的项目网站发布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Cheng其他文献
A novel widely-linear quaternion multiband-structured subband adaptive filter algorithm
一种新颖的宽线性四元数多带结构子带自适应滤波算法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Wei Huang;Wei Cheng - 通讯作者:
Wei Cheng
Silicon photonic secure communication using artificial neural network
使用人工神经网络的硅光子安全通信
- DOI:
10.1016/j.chaos.2022.112524 - 发表时间:
2022-10 - 期刊:
- 影响因子:0
- 作者:
Yan Wang;Wei Cheng;Junbo Feng;Shaoge Zang;Hao Cheng;Zheng Peng;Xiaodong Ren;Yubei Shuai;Hao Liu;Xun Pu;Junbo Yang;吴加贵 - 通讯作者:
吴加贵
Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and beta;-catenin signaling pathway
芒果苷通过调节基质金属蛋白酶、上皮间质转化和在乳腺癌细胞中发挥抗肿瘤活性
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:3.8
- 作者:
Bing Yang;Tingxiu Xiang;Xuedong Yin;Weiyan Peng;Wei Cheng;Jingyuan Wan;Fuling Luo;Hongyuan Li;Guosheng Ren - 通讯作者:
Guosheng Ren
Electrochemical property of graphene oxide/nafion/AuNPs nanocomposite in electrochemical sensor
氧化石墨烯/nafion/AuNPs纳米复合材料在电化学传感器中的电化学性能
- DOI:
10.4028/www.scientific.net/amm.568-570.542 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jianbo Li;Yurong Yan;Bo Shen;Yongguo Li;Wei Cheng;Shijia Ding - 通讯作者:
Shijia Ding
Terahertz refractive index sensor based on the guided resonance in a photonic crystal slab
基于光子晶体板中引导谐振的太赫兹折射率传感器
- DOI:
10.1016/j.optcom.2018.10.061 - 发表时间:
2019-03 - 期刊:
- 影响因子:2.4
- 作者:
Yulin Wang;Wei Cheng;Jianyuan Qin;Zhanghua Han - 通讯作者:
Zhanghua Han
Wei Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Cheng', 18)}}的其他基金
PFI-TT: Smart City Curbside Parking Management
PFI-TT:智慧城市路边停车管理
- 批准号:
2313785 - 财政年份:2023
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
I-Corps: Smart Street Parking Assistant
I-Corps:智能街道停车助理
- 批准号:
2024103 - 财政年份:2020
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
CyberTraining: CIP: Collaborative Research: Enhancing Mobile Security Education by Creating Eureka Experiences
网络培训:CIP:协作研究:通过创建 Eureka 体验加强移动安全教育
- 批准号:
1853982 - 财政年份:2018
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
CyberTraining: CIP: Collaborative Research: Enhancing Mobile Security Education by Creating Eureka Experiences
网络培训:CIP:协作研究:通过创建 Eureka 体验加强移动安全教育
- 批准号:
1829415 - 财政年份:2018
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Acquisition, Collection and Computation of Dynamic Big Sensory Data in Smart Cities
BIGDATA:F:协作研究:智慧城市动态大传感数据的采集、收集和计算
- 批准号:
1741287 - 财政年份:2018
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
I-Corps: Rapid Localization Platform for Self-Organized Networking Systems
I-Corps:自组织网络系统的快速本地化平台
- 批准号:
1550427 - 财政年份:2015
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
Collaborative Research: CyberSEES: Type 1: A Pilot Study on Cognitive Acoustic Underwater Networks (CAUNet) for Sustainable Ocean Monitoring and Exploration
合作研究:CyberSEES:类型 1:用于可持续海洋监测和探索的认知声学水下网络 (CAUNet) 试点研究
- 批准号:
1331632 - 财政年份:2013
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Time Critical Localization in Mobile Networks
EAGER:协作研究:移动网络中的时间关键定位
- 批准号:
1441990 - 财政年份:2013
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
Collaborative Research: CyberSEES: Type 1: A Pilot Study on Cognitive Acoustic Underwater Networks (CAUNet) for Sustainable Ocean Monitoring and Exploration
合作研究:CyberSEES:类型 1:用于可持续海洋监测和探索的认知声学水下网络 (CAUNet) 试点研究
- 批准号:
1441253 - 财政年份:2013
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Time Critical Localization in Mobile Networks
EAGER:协作研究:移动网络中的时间关键定位
- 批准号:
1248380 - 财政年份:2012
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
- 批准号:
2027516 - 财政年份:2020
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
- 批准号:
1934319 - 财政年份:2019
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
- 批准号:
1838022 - 财政年份:2019
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
- 批准号:
1926250 - 财政年份:2019
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
1947584 - 财政年份:2019
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
1837964 - 财政年份:2019
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838222 - 财政年份:2019
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838248 - 财政年份:2019
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant