RI: Medium: Collaborative Research: Semi-Supervised Discriminative Training of Language Models

RI:媒介:协作研究:语言模型的半监督判别训练

基本信息

  • 批准号:
    0963898
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

This project is conducting fundamental research in statistical language modeling to improve human language technologies, including automatic speech recognition (ASR) and machine translation (MT). A language model (LM) is conventionally optimized, using text in the target language, to assign high probability to well-formed sentences. This method has a fundamental shortcoming: the optimization does not explicitly target the kinds of distinctions necessary to accomplish the task at hand, such as discriminating (for ASR) between different words that are acoustically confusable or (for MT) between different target-language words that express the multiple meanings of a polysemous source-language word. Discriminative optimization of the LM, which would overcome this shortcoming, requires large quantities of paired input-output sequences: speech and its reference transcription for ASR or source-language (e.g. Chinese) sentences and their translations into the target language (say, English) for MT. Such resources are expensive, and limit the efficacy of discriminative training methods. In a radical departure from convention, this project is investigating discriminative training using easily available, *unpaired* input and output sequences: un-transcribed speech or monolingual source-language text and unpaired target-language text. Two key ideas are being pursued: (i) unlabeled input sequences (e.g. speech or Chinese text) are processed to learn likely confusions encountered by the ASR or MT system; (ii) unpaired output sequences (English text) are leveraged to discriminate between these well-formed sentences from the (supposed) ill-formed sentences the system could potentially confuse them with. This self-supervised discriminative training, if successful, will advance machine intelligence in fundamental ways that impact many other applications.
该项目正在进行统计语言建模的基础研究,以改进人类语言技术,包括自动语音识别(ASR)和机器翻译(MT)。语言模型(LM)通常使用目标语言中的文本进行优化,以将高概率分配给结构良好的句子。这种方法有一个根本的缺点:优化没有明确地针对完成手头任务所必需的各种区别,例如区分(对于ASR)在声学上容易混淆的不同单词之间,或者(对于MT)在表达多义词源语言单词的多个含义的不同目标语言单词之间。为了克服这一缺点,LM的判别优化需要大量成对的输入输出序列:用于ASR的语音及其参考转录,或用于机器翻译的源语言(如汉语)句子及其翻译成目标语言(如英语)。这些资源昂贵,并且限制了判别训练方法的有效性。与传统截然不同的是,该项目正在研究使用容易获得的、*未配对的*输入和输出序列的判别训练:未转录的语音或单语源语言文本和未配对的目标语言文本。目前正在研究的两个关键思想是:(i)处理未标记的输入序列(例如语音或中文文本),以学习ASR或MT系统可能遇到的混淆;(ii)利用未配对的输出序列(英语文本)来区分这些格式良好的句子和系统可能混淆的(假定的)格式不良的句子。这种自我监督的判别训练如果成功,将从根本上推动机器智能的发展,影响许多其他应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjeev Khudanpur其他文献

Getting more from automatic transcripts for semi-supervised language modeling
  • DOI:
    10.1016/j.csl.2015.08.007
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Scott Novotney;Richard Schwartz;Sanjeev Khudanpur
  • 通讯作者:
    Sanjeev Khudanpur
A dilemma of ground truth in noisy speech separation and an approach to lessen the impact of imperfect training data
  • DOI:
    10.1016/j.csl.2022.101410
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Maciejewski;Jing Shi;Shinji Watanabe;Sanjeev Khudanpur
  • 通讯作者:
    Sanjeev Khudanpur
Towards machines that know when they do not know: Summary of work done at 2014 Frederick Jelinek Memorial workshop
走向知道何时不知道的机器:2014 年 Frederick Jelinek 纪念研讨会所做工作总结
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hynek Hermansky;Lukas Burget;Jordan Cohen;Emmanuel Dupoux Naomi Feldman;John Godfrey;Sanjeev Khudanpur;Matthew Maciejewski;Sri Harish Mallidi;Anjali Menon;Tetsuji Ogawa;Vijayaditya Peddinti;Richard Rose;Richard Stern;Matthew Wiesner;Karel Ve
  • 通讯作者:
    Karel Ve

Sanjeev Khudanpur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjeev Khudanpur', 18)}}的其他基金

CCRI: ENS: Next Generation Tools for Spoken Language Science & Technology
CCRI:ENS:下一代口语科学工具
  • 批准号:
    2120435
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Cross-Cutting Research Workshops on Intelligent Information Systems
智能信息系统跨领域研究研讨会
  • 批准号:
    1005411
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SGER: Self-Supervised Discriminative Training of Statistical Language Models
SGER:统计语言模型的自监督判别训练
  • 批准号:
    0840112
  • 财政年份:
    2008
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
PIRE: Investigation of Meaning Representations in Language Understanding for Machine Translation Systems
PIRE:机器翻译系统语言理解中的意义表示研究
  • 批准号:
    0530118
  • 财政年份:
    2005
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SGER: Pronunciation Modeling for Conversational Speech Recognition
SGER:会话语音识别的发音建模
  • 批准号:
    9714169
  • 财政年份:
    1997
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312955
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
  • 批准号:
    2313137
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了