III: Medium: Collaborative Research: Integrating Behavioral, Geometrical and Graphical Modeling to Simulate and Visualize Urban Areas

III:媒介:协作研究:集成行为、几何和图形建模来模拟和可视化城市地区

基本信息

  • 批准号:
    0964302
  • 负责人:
  • 金额:
    $ 44.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

In this project, the PI and his team will develop a new simulation framework to interactively model and visualize socio-economic and geometric characteristics of urban areas. The framework will consist of a synergistic collaboration of three different areas: behavioral urban modeling, probabilistic graphical modeling, and visualization and computer graphics. In machine learning and statistics, the area of probabilistic graphical modeling offers a flexible framework to build, estimate and simulate from models of substantial complexity and scale, with partially observed data. By accounting for uncertainty and interdependencies, including aspects of dynamic equilibrium that arise in modeling the complex spatio-temporal dynamics of urban areas, the PI argues there is significant potential for breakthroughs in modeling large-scale urban systems. Similarly, by integrating behavioral and geometrical dimensions of urban areas, he expects to exploit the power of behavioral simulations more effectively by filling in geometric details that behavioral models are not well suited to manage, and at the same time provide a powerful framework to generate 2D and 3D geometric representations of urban areas that are behaviorally and geometrically consistent. The PI will take advantage of massive datasets available for urban areas, including parcel and building inventories, business establishment inventories, census data, household surveys, and GIS data on physical and political features, and will fuse these data into a coherent and consistent database to support his modeling objectives. This data fusion will address imputation of missing data, accounting for complex spatial and relational connections among the data sources. The PI will evaluate the accuracy and usability of his system through several deployments in diverse contexts. The PI has elicited engagement from the Urban Land Institute, the European Research Council, and the Council for Scientific and Industrial Research. Several organizations in the San Francisco Bay Area in California and the Puget Sound region in Washington will serve as testbeds for the research. Finally, the PI will collaborate with other NSF-funded research projects, such as the Drought Research Initiative Network, in order to investigate correlations between urban development and water/drought. Broader Impacts: The results of this multidisciplinary project will have a transformative effect on the area of urban simulation, in that they will enable non-professionals as well as the general public to better understand urban phenomena. City planners, researchers, students, and citizens will be able to efficiently simulate urban processes not previously possible, and to visualize the effects of adopting different urban policies on urban livability and sustainability outcomes, and to address local and global concerns regarding equity, infrastructure, and economic development. The framework will provide interactive desktop and web-based interfaces for configuring urban scenario inputs to a simulation that may reach petabytes in data size, and to visualize the simulation results using 2D aerial views, 3D city walkthroughs, and choroplethic maps and tables of indicators portraying the simulated area. Thus, the work will also advance the fields of visualization and computer graphics, through development of new techniques for large-scale urban modeling and rendering. The PI will develop an open-source system to make the results of this research widely available.
在这个项目中,PI和他的团队将开发一个新的模拟框架,以交互式方式模拟和可视化城市地区的社会经济和几何特征。 该框架将包括三个不同领域的协同合作:行为城市建模,概率图形建模,可视化和计算机图形。 在机器学习和统计学中,概率图形建模领域提供了一个灵活的框架,可以使用部分观测数据从相当复杂和规模的模型中构建,估计和模拟。 通过考虑不确定性和相互依赖性,包括在模拟城市地区复杂的时空动态过程中出现的动态平衡方面,PI认为在模拟大规模城市系统方面有很大的突破潜力。 同样,通过整合城市区域的行为和几何维度,他希望通过填充行为模型不适合管理的几何细节来更有效地利用行为模拟的力量,同时提供一个强大的框架来生成行为和几何一致的城市区域的2D和3D几何表示。 PI将利用城市地区的大量数据集,包括地块和建筑物清单,商业机构清单,人口普查数据,家庭调查以及地理信息系统的物理和政治特征数据,并将这些数据融合到一个连贯一致的数据库中,以支持他的建模目标。 这种数据融合将解决缺失数据的插补问题,解决数据源之间复杂的空间和关系连接。 PI将通过在不同环境中的多次部署来评估其系统的准确性和可用性。 城市土地研究所、欧洲研究理事会和科学与工业研究理事会参与了PI。 加州的弗朗西斯科湾区和华盛顿的普吉特海湾地区的几个组织将作为这项研究的试验台。最后,PI将与其他NSF资助的研究项目合作,如干旱研究倡议网络,以调查城市发展与水/干旱之间的相互关系。更广泛的影响:这一多学科项目的成果将对城市模拟领域产生变革性影响,因为它们将使非专业人员和普通公众能够更好地了解城市现象。 城市规划者、研究人员、学生和市民将能够有效地模拟以前不可能的城市进程,并可视化采用不同城市政策对城市宜居性和可持续性成果的影响,并解决当地和全球对公平、基础设施和经济发展的关切。 该框架将提供交互式桌面和基于网络的界面,用于配置数据量可能达到PB级的模拟的城市情景输入,并使用二维鸟瞰图、三维城市步行图和描绘模拟区域的分区地图和指标表来可视化模拟结果。 因此,这项工作也将通过开发大规模城市建模和渲染的新技术,推动可视化和计算机图形学领域的发展。 PI将开发一个开源系统,使这项研究的结果广泛提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Aliaga其他文献

Digitizing cities for urban weather: representing realistic cities for weather and climate simulations using computer graphics and artificial intelligence
  • DOI:
    10.1007/s43762-023-00111-z
  • 发表时间:
    2024-03-12
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Daniel Aliaga;Dev Niyogi
  • 通讯作者:
    Dev Niyogi

Daniel Aliaga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Aliaga', 18)}}的其他基金

III: Medium: Collaborative Research: Deep Generative Modeling for Urban and Archaeological Recovery
III:媒介:协作研究:城市和考古恢复的深度生成模型
  • 批准号:
    2107096
  • 财政年份:
    2021
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
EAGER: Minimal 3D Modeling Methodology
EAGER:最小 3D 建模方法
  • 批准号:
    2032770
  • 财政年份:
    2020
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
Elements: Data: U-Cube: A Cyberinfrastructure for Unified and Ubiquitous Urban Canopy Parameterization
元素:数据:U-Cube:统一且无处不在的城市冠层参数化的网络基础设施
  • 批准号:
    1835739
  • 财政年份:
    2019
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
CHS: Small: Functional Proceduralization of 3D Geometric Models
CHS:小型:3D 几何模型的功能程序化
  • 批准号:
    1816514
  • 财政年份:
    2018
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
CGV: Medium: Collaborative Research: A Heterogeneous Inference Framework for 3D Modeling and Rendering of Sites
CGV:媒介:协作研究:用于站点 3D 建模和渲染的异构推理框架
  • 批准号:
    1302172
  • 财政年份:
    2013
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
CDS&E: STRONG Cities - Simulation Technologies for the Realization of Next Generation Cities
CDS
  • 批准号:
    1250232
  • 财政年份:
    2012
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
RI: Small: A Computational Framework for Marking Physical Objects against Counterfeiting and Tampering
RI:小型:用于标记物理对象防伪和篡改的计算框架
  • 批准号:
    0913875
  • 财政年份:
    2009
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
MSPA-MCS: 3D Scene Digitization - A Novel Invariant Approach for Large-Scale Environment Capture
MSPA-MCS:3D 场景数字化 - 一种用于大规模环境捕获的新颖的不变方法
  • 批准号:
    0434398
  • 财政年份:
    2004
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312930
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310113
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了