Packings and contractions of graphs and hypergraphs

图和超图的打包和收缩

基本信息

项目摘要

Alexandr V. KostochkaPackings and contractions of graphs and hypergraphsThe notions of packings and minors are basic in graph theory. An important instance of combinatorial packing problems is that of graph packing. Graphs of order n pack, if there exists an edge disjoint placement of all these graphs into the complete graph with n vertices. In terms of graph packing, one can generalize or make more natural some graph theory problems or concepts. Important examples of packing problems are problems on existence of a given subgraph, coloring problems, Turan-type problems, and Ramsey-type problems. Another basic notion is that of a minor. A graph H is a minor of a graph G if H can be obtained from G by a sequence of contractions of edges and deletions of edges and vertices. A number of problems and results in graph theory relate impossibility to pack some graphs with the existence of some minors in these graphs. Maybe, the most famous example is Hadwiger's Conjecture that every non-k-colorable graph has the complete graph with k+1 vertices as a minor. The examples above (and many more) show that it is helpful and potentially fruitful to study in terms of graph packings and contractions a number of rather general problems that are rich enough models for many important applications. Areas of application include scheduling, database access, assignment of computer registers, data clustering, computer-aided design of printed circuits, positional games, DNA sequencing, etc.The goal of this project is to explore a series of extremal problems on packings and minors of graphs and hypergraphs, with restrictions on degrees of their vertices. It is expected that the results will make an essential step in understanding of these problems. Some proofs can lead to efficient packing and contraction algorithms; negative results will impose limits on what can be accomplished. The particular packing problem of equitable coloring has many applications in scheduling, partitioning, and load balancing problems. A fair amount of the work will be done jointly with graduate students and recent graduates of the University of Illinois at Urbana-Champaign.
图和超图的填充和压缩填充和子式的概念是图论中的基本概念。组合包装问题的一个重要例子是图包装问题。 n阶图是一个packs,如果存在一个边不交的位置,所有这些图到完全图有n个顶点。在图填充方面,人们可以推广或使一些图论问题或概念更自然。填充问题的重要例子是给定子图的存在性问题、着色问题、Turan型问题和Ramsey型问题。另一个基本概念是未成年人。一个图H是图G的一个子图,如果H可以通过一系列边的收缩和边与顶点的删除从图G得到。图论中的一些问题和结果涉及到不可能包装一些图与这些图中存在一些未成年人。也许,最著名的例子是Hadwiger猜想,即每个非k-可着色图都有k+1个顶点的完全图作为子图。上面的例子(以及更多的例子)表明,用图的填充和收缩来研究一些相当普遍的问题是有帮助的,而且可能是富有成效的,这些问题对于许多重要的应用来说是足够丰富的模型。 应用领域包括调度,数据库访问,分配计算机寄存器,数据聚类,计算机辅助设计的印刷电路,位置游戏,DNA测序等。本项目的目标是探索一系列极值问题的包装和子的图和超图,限制其顶点的程度。 预计这些结果将为理解这些问题迈出重要一步。一些证明可以导致有效的包装和收缩算法;负面的结果将限制可以完成的工作。 均匀着色的特殊装箱问题在调度、划分和负载平衡问题中有许多应用。相当多的工作将与伊利诺伊大学厄巴纳-香槟分校的研究生和应届毕业生共同完成。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandr Kostochka其他文献

Dirac-type theorems for long Berge cycles in hypergraphs
超图中长贝尔格循环的狄拉克型定理
Hadwiger Number and the Cartesian Product of Graphs
  • DOI:
    10.1007/s00373-008-0795-7
  • 发表时间:
    2008-09-13
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    L. Sunil Chandran;Alexandr Kostochka;J. Krishnam Raju
  • 通讯作者:
    J. Krishnam Raju
An Ore-type analogue of the Sauer-Spencer Theorem
  • DOI:
    10.1007/s00373-007-0732-1
  • 发表时间:
    2007-08-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Alexandr Kostochka;Gexin Yu
  • 通讯作者:
    Gexin Yu
On 2-Detour Subgraphs of the Hypercube
  • DOI:
    10.1007/s00373-008-0790-z
  • 发表时间:
    2008-09-13
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    József Balogh;Alexandr Kostochka
  • 通讯作者:
    Alexandr Kostochka
Decomposing Graphs into Long Paths

Alexandr Kostochka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandr Kostochka', 18)}}的其他基金

Existence of Specific Paths, Cycles, and Colorings in Graphs and Hypergraphs
图和超图中特定路径、循环和着色的存在性
  • 批准号:
    2153507
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Extremal Problems on Graphs Related to Colorings and Cycle Structure
与着色和循环结构相关的图的极值问题
  • 批准号:
    1600592
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Coloring-related problems for graphs and hypergraphs with degree restrictions
具有度数限制的图和超图的着色相关问题
  • 批准号:
    1266016
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Collaborative research on degree conditions for packing and covering problems on graphs
图上包装覆盖问题度条件的协同研究
  • 批准号:
    0650784
  • 财政年份:
    2007
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Extremal Combinatorics at Illinois (EXCILL)
伊利诺伊州极值组合学 (EXCILL)
  • 批准号:
    0608413
  • 财政年份:
    2006
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Extremal problems on packing sparse graphs and hypergraphs
稀疏图和超图打包的极值问题
  • 批准号:
    0400498
  • 财政年份:
    2004
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Colorings and List Colorings: Contrasts and Similarities
着色和列表着色:对比和相似之处
  • 批准号:
    0099608
  • 财政年份:
    2001
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant

相似海外基金

Can Combined Transcutaneous Spinal Cord Stimulation and Functional Electrical Stimulation Produce Larger, More Fatigue-Resistant Contractions for Individuals with Spinal Cord Injury?
经皮脊髓刺激和功能性电刺激相结合能否为脊髓损伤患者产生更大、更耐疲劳的收缩?
  • 批准号:
    486304
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship Programs
Characterizing neural and muscular components of static and dynamic fatigue during high rate of force development contractions in females and males
表征女性和男性高速率发力收缩过程中静态和动态疲劳的神经和肌肉成分
  • 批准号:
    568013-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Postdoctoral Fellowships
Mirror activity during sustained and discrete unilateral grip contractions
持续和不连续的单侧握力收缩期间的镜像活动
  • 批准号:
    574915-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    University Undergraduate Student Research Awards
Does post-activation potentiation ameliorate prolonged low-frequency force depression after fatiguing contractions in intact single muscle fibres from mice?
激活后增强是否可以改善小鼠完整单肌纤维疲劳收缩后的长时间低频力抑制?
  • 批准号:
    577733-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Exercise pressor responses before and after eccentric contractions
离心收缩前后的运动加压反应
  • 批准号:
    573014-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    University Undergraduate Student Research Awards
Mirror activity and brain activation during sustained and discrete unilateral grip contractions
持续和不连续的单侧握力收缩过程中的镜像活动和大脑激活
  • 批准号:
    564776-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    University Undergraduate Student Research Awards
The three-dimensional spatiotemporal dynamics of human uterine contractions using electromyometrical imaging (EMMI)
使用肌电成像 (EMMI) 测量人体子宫收缩的三维时空动态
  • 批准号:
    10366693
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
The three-dimensional spatiotemporal dynamics of human uterine contractions using electromyometrical imaging (EMMI)
使用肌电成像 (EMMI) 测量人体子宫收缩的三维时空动态
  • 批准号:
    10491822
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
Mechanisms underlying the generation of spontaneous contractions in human uterine muscle: Potential therapeutic target for dysfunctional labour
人类子宫肌肉自发收缩产生的机制:功能障碍性分娩的潜在治疗目标
  • 批准号:
    nhmrc : 2000774
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Ideas Grants
The three-dimensional spatiotemporal dynamics of human uterine contractions using electromyometrical imaging (EMMI)
使用肌电成像 (EMMI) 测量人体子宫收缩的三维时空动态
  • 批准号:
    10682485
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了