Collaborative Research: GOSTRUCT: modeling the structure of the Gene Ontology for accurate protein function prediction
合作研究:GOSTRUCT:对基因本体结构进行建模以实现准确的蛋白质功能预测
基本信息
- 批准号:0965616
- 负责人:
- 金额:$ 28.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Colorado State University is awarded a grant to develop machine learning methods for predicting protein function. The availability of protein function annotations supports the everyday work of biologists in multiple areas---from biomedical discovery to the study of plant drought resistance, and the design of bacteria useful in biofuel production. Assigning function to proteins in sequenced genomes is a major undertaking, and with new organisms being sequenced daily, experimentally determining the function of all the proteins in those organisms is not practical, requiring computational assignment of function to proteins that have not been studied in the lab. Computational scientists have been considering the problem of function prediction for over two decades. Yet, the basic methodology for protein function prediction has not changed much during this time and remains that of "annotation transfer" from proteins with a known function using a method for sequence comparison such as BLAST. Protein function prediction has several properties that make it difficult to apply state-of-the-art machine learning methods to this problem, such as the large number of potential functions (thousands of possible terms), the fact that proteins can have multiple functions, and the hierarchical relationship between terms in the Gene Ontology (GO), which is the standard system of keywords used to describe protein function. In this work the problem of annotating proteins with GO terms will be explicitly modeled as a hierarchical classification problem using the methodology of "kernel methods for structured outputs", which allows the modeling of complex prediction problems. This methodology will allow the PIs to integrate a variety of genomic information - sequence data, gene expression, protein-protein interactions, and information mined from the biological literature. The award will lead to a function prediction method with state-of-the-art accuracy. The project will have broad impact by providing the GOstruct method to the bioinformatics and biology communities in the form of downloadable software and an online-accessible function prediction server. Education will be impacted through the incorporation of the tool into new courses in programming for biologists and on kernel methods.
Colorado State University is awarded a grant to develop machine learning methods for predicting protein function. The availability of protein function annotations supports the everyday work of biologists in multiple areas---from biomedical discovery to the study of plant drought resistance, and the design of bacteria useful in biofuel production. Assigning function to proteins in sequenced genomes is a major undertaking, and with new organisms being sequenced daily, experimentally determining the function of all the proteins in those organisms is not practical, requiring computational assignment of function to proteins that have not been studied in the lab. Computational scientists have been considering the problem of function prediction for over two decades. Yet, the basic methodology for protein function prediction has not changed much during this time and remains that of "annotation transfer" from proteins with a known function using a method for sequence comparison such as BLAST. Protein function prediction has several properties that make it difficult to apply state-of-the-art machine learning methods to this problem, such as the large number of potential functions (thousands of possible terms), the fact that proteins can have multiple functions, and the hierarchical relationship between terms in the Gene Ontology (GO), which is the standard system of keywords used to describe protein function. In this work the problem of annotating proteins with GO terms will be explicitly modeled as a hierarchical classification problem using the methodology of "kernel methods for structured outputs", which allows the modeling of complex prediction problems. This methodology will allow the PIs to integrate a variety of genomic information - sequence data, gene expression, protein-protein interactions, and information mined from the biological literature. The award will lead to a function prediction method with state-of-the-art accuracy. The project will have broad impact by providing the GOstruct method to the bioinformatics and biology communities in the form of downloadable software and an online-accessible function prediction server. Education will be impacted through the incorporation of the tool into new courses in programming for biologists and on kernel methods.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lawrence Hunter其他文献
時間表現と固有表現を標識とする ウィキペディアからの言い換え知識獲得
使用时间表达式和命名实体作为指标从维基百科获取释义知识
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Kano;Yoshinobu;William A.Baumgartner Jr;Luke McCrohon;Sophia Ananiadou;K.Bretonnel Cohen;Lawrence Hunter;Jun'ichi Tsujii;中村;宗官祥史;市川浩丈 - 通讯作者:
市川浩丈
化学実験の安全学習支援のための警告メッセージにおける多義性尺度設計の基礎検討
警告信息歧义量表设计支持化学实验安全学习的基础研究
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Kano;Yoshinobu;William A.Baumgartner Jr;Luke McCrohon;Sophia Ananiadou;K.Bretonnel Cohen;Lawrence Hunter;Jun'ichi Tsujii;中村;宗官祥史 - 通讯作者:
宗官祥史
The qualtitive reasoning neuron: a new approach to modeling in computational neuroscience
定性推理神经元:计算神经科学建模的新方法
- DOI:
10.1007/978-1-4615-4831-7_101 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
J. Krichmar;G. Ascoli;J. Olds;L. Hunter;Lawrence Hunter - 通讯作者:
Lawrence Hunter
Ontologies for programs, not people
- DOI:
10.1186/gb-2002-3-6-interactions1002 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:9.400
- 作者:
Lawrence Hunter - 通讯作者:
Lawrence Hunter
The use of explicit goals for knowledge to guide inference and learning
- DOI:
10.1007/bf00058575 - 发表时间:
1992-07-01 - 期刊:
- 影响因子:3.500
- 作者:
Ashwin Ram;Lawrence Hunter - 通讯作者:
Lawrence Hunter
Lawrence Hunter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lawrence Hunter', 18)}}的其他基金
US-German Collaboration: Unravel CNS regeneration - From Fact Extraction to Experiment Design
美德合作:揭示中枢神经系统再生——从事实提取到实验设计
- 批准号:
1207592 - 财政年份:2012
- 资助金额:
$ 28.84万 - 项目类别:
Standard Grant
Rocky Mountain Regional Bioinformatics Conference Support
落基山区域生物信息学会议支持
- 批准号:
0905546 - 财政年份:2008
- 资助金额:
$ 28.84万 - 项目类别:
Standard Grant
Workshop on Creating an Infrastructure for Intelligent Systems in Molecular Biology, November 13-14, 1991, NLM
创建分子生物学智能系统基础设施研讨会,1991 年 11 月 13-14 日,NLM
- 批准号:
9123156 - 财政年份:1991
- 资助金额:
$ 28.84万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 28.84万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 28.84万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 28.84万 - 项目类别:
Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 28.84万 - 项目类别:
Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 28.84万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 28.84万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 28.84万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 28.84万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 28.84万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
CyberCorps 服务奖学金:培养具有研究意识的网络领导者
- 批准号:
2336409 - 财政年份:2024
- 资助金额:
$ 28.84万 - 项目类别:
Continuing Grant














{{item.name}}会员




