Collaborative Research: Successive Risk-Neutral Approximations of Dynamic Risk-Averse Optimization Problems
协作研究:动态风险规避优化问题的连续风险中性逼近
基本信息
- 批准号:0965689
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research aims at developing methods for solving stochastic dynamic optimization problems that involve risk-averse preferences. Mathematical models of risk aversion capture entire distributions of random outcomes with increased attention to events of small probability and high consequences. The project will concentrate on multistage stochastic optimization problems and on Markov decision processes incorporating dynamic risk measures and dynamic stochastic ordering constraints. The proposed numerical approach integrates modern theories of risk measures and stochastic orders with decomposition techniques for large-scale optimization problems, methods of nonsmooth optimization, and stochastic control methods. The approach will be based on sequential risk-neutral approximations of risk-averse problems. The approximations will be used to devise primal and dual decomposition methods for multistage problems with dynamic risk measures and dynamic stochastic ordering constraints. Special attention will be paid to Markov decision problems. A theory of Markov risk measures and risk-averse dynamic programming will be developed. Numerical methods for risk-averse dynamic programming will also explore the idea of sequential risk-neutral approximations.The project will provide qualitative advance in areas involving multi-stage decision-making in stochastic systems under high uncertainty and risk. It will provide modeling and algorithmic tools to formalize and solve long-term planning problems in which risk is an important issue and average performance criteria are insufficient. Problems of this nature arise in supply chain management, military planning problems, energy production and distribution, telecommunication, insurance and finance, medicine, and other areas. The project will benefit the graduate education at Rutgers University and Stevens Institute of Technology.
提出的研究旨在开发解决涉及风险规避偏好的随机动态优化问题的方法。风险厌恶的数学模型捕捉了随机结果的整个分布,增加了对小概率和高后果事件的关注。该项目将集中研究多阶段随机优化问题以及包含动态风险度量和动态随机排序约束的马尔可夫决策过程。所提出的数值方法将现代风险度量理论和随机阶数与大规模优化问题的分解技术、非光滑优化方法和随机控制方法相结合。该方法将基于风险厌恶问题的顺序风险中性近似。这些近似将用于设计具有动态风险度量和动态随机排序约束的多阶段问题的原始和对偶分解方法。我们将特别关注马尔可夫决策问题。一个理论的马尔可夫风险措施和风险厌恶动态规划将发展。风险规避动态规划的数值方法也将探讨顺序风险中性近似的思想。该项目将为高不确定性和高风险随机系统中涉及多阶段决策的领域提供定性进展。它将提供建模和算法工具,以形式化和解决长期规划问题,其中风险是一个重要问题,平均性能标准是不够的。这种性质的问题出现在供应链管理、军事规划问题、能源生产和分配、电信、保险和金融、医药等领域。该项目将有利于罗格斯大学和史蒂文斯理工学院的研究生教育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrzej Ruszczynski其他文献
The deepest event cuts in risk-averse optimization with application to radiation therapy design
最深的事件削减了风险规避优化并应用于放射治疗设计
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.2
- 作者:
C. A. Vitt;Darinka Dentcheva;Andrzej Ruszczynski;Nolan Sandberg - 通讯作者:
Nolan Sandberg
Fast Dual Subgradient Optimization of the Integrated Transportation Distance Between Stochastic Kernels
随机核间综合运输距离的快速双次梯度优化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhengqi Lin;Andrzej Ruszczynski - 通讯作者:
Andrzej Ruszczynski
Andrzej Ruszczynski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrzej Ruszczynski', 18)}}的其他基金
Collaborative Research: Risk-Averse Control of Markov Systems with Model Uncertainty
协作研究:具有模型不确定性的马尔可夫系统的风险规避控制
- 批准号:
1907522 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Time-Consistent Risk-Averse Control of Markov Systems
协作研究:马尔可夫系统的时间一致风险规避控制
- 批准号:
1312016 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
AMC-SS: Collaborative Research: Dynamic Stochastic Optimization with Stochastic Ordering Constraints and Risk Functionals
AMC-SS:协作研究:具有随机排序约束和风险泛函的动态随机优化
- 批准号:
0603728 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Risk-Averse Stochastic Optimization
合作研究:风险规避随机优化
- 批准号:
0354678 - 财政年份:2004
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Semi-Infinite Probabilistic Optimization
合作研究:半无限概率优化
- 批准号:
0303545 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
CyberCorps 服务奖学金:培养具有研究意识的网络领导者
- 批准号:
2336409 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant