Operator Theory and Complex Analysis

算子理论与复分析

基本信息

  • 批准号:
    0966845
  • 负责人:
  • 金额:
    $ 23.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

The PI will study a range of problems on the interplay between complex analysis and operator theory. These two areas of mathematics have become symbiotic, with each leading to growth and development in the other. One problem the P.I. will study is the entropy of polynomials that have all their zeroes on the unit circle. There is a natural conjecture here that the entropy is minimized if the polynomial has equally spaced zeroes; this conjecture, which can be reformulated in operator theoretic terms, has consequences in complex analysis, such as understanding extremal maps into punctured disks. The P.I. will work on the intriguing problem of linking operator theory with functions of several variables. In particular, he will seek to characterize those functions of several variables that are matrix monotone; this will extend the fundamental results of K. Löwner from 1934 that characterized the functions of one variable with this property. The P.I. will also continue his collaboration with specialists in medical ultrasound imaging on ways to improve the imaging by analyzing the entropy rather than the energy of the reflected signal. The most immediate impact of the P.I.'s work will be in the field of ultrasound. His work with M. Hughes is aimed at producing software that can fit into a handheld ultrasound scanner that can be used in the home to measure the muscle density of children with Duschenne muscular dystrophy, and thus allow daily adjustments of their drug regimen. His work in pure mathematics, as is normal in the dsicipline, will diffuse more slowly into broader fields of science. Initially the main impact will be in pure mathematics, and in the education of future researchers, but there is a long history of crossover from operator-theoretic complex analysis into the engineering field of control theory, and that should continue. The P.I. Has a successful record of collaborating with chemical and electrical engineers, physicists, chemists, biologists and doctors. His background in pure mathematics leads to a different approach to their problems, which has often been successful. He will continue to seek out scientists and engineers to collaborate with.
PI将研究复分析和算子理论之间相互作用的一系列问题。这两个数学领域已经成为共生的,每一个导致增长和发展的其他。一个问题是私家侦探。将研究的是所有零点都在单位圆上的多项式的熵。这里有一个自然的猜想,如果多项式有等间距的零,熵就最小化;这个猜想可以用算子理论的术语重新表述,在复分析中有结果,比如理解到穿孔圆盘的极值映射。私家侦探将致力于将算子理论与多元函数联系起来的有趣问题。特别是,他将寻求表征这些职能的几个变量是矩阵单调,这将扩大基本结果K。Löwner从1934年,其特点是功能的一个变量与此属性。私家侦探他还将继续与医学超声成像专家合作,通过分析熵而不是反射信号的能量来改善成像。 私家侦探最直接的影响。的工作将在超声波领域。他与M。Hughes的目标是生产可以安装在手持式超声扫描仪中的软件,该扫描仪可以在家中用于测量杜氏肌营养不良症儿童的肌肉密度,从而允许每天调整他们的药物方案。他的工作在纯数学,因为是正常的在dsicipline,将扩散更缓慢地进入更广泛的科学领域。最初的主要影响将是在纯数学,并在未来的研究人员的教育,但有一个长期的历史交叉从算子理论复杂的分析到工程领域的控制理论,并应继续下去。私家侦探与化学和电气工程师、物理学家、化学家、生物学家和医生有着成功的合作记录。他的背景,纯数学导致不同的方法来解决他们的问题,这往往是成功的。他将继续寻找科学家和工程师合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John McCarthy其他文献

Agency, Power and Confrontation: the Role for Socially Engaged Art in CSCW with Rurban Communities in Support of Inclusion
代理、权力与对抗:社会参与艺术在 CSCW 与农村社区支持包容性中的作用
132. Genetic differences exist in the rate of maturity among grazing dairy cows
  • DOI:
    10.1016/j.anscip.2021.03.133
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Maeve Williams;Roy D. Sleator;Craig P. Murphy;John McCarthy;Donagh P. Berry
  • 通讯作者:
    Donagh P. Berry
60 nm Widely Tunable Three Section Slot Laser
60 nm 宽范围可调谐三段狭缝激光器
  • DOI:
    10.1109/jqe.2023.3318588
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Jack Mulcahy;John McCarthy;Frank H. Peters;Xing Dai
  • 通讯作者:
    Xing Dai
An Effective Decontamination Response Plan
  • DOI:
    10.1016/j.jen.2005.12.020
  • 发表时间:
    2006-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Keith D. Micucci;Craig Hanzl;Michael Ramos;John Lehr;Doug Dunn;Thomas Wagner;John McCarthy
  • 通讯作者:
    John McCarthy
New approaches for assessing site formation of submerged lithic scatters
  • DOI:
    10.1016/j.jasrep.2023.104046
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael O'Leary;Michael Cuttler;Jonathan Benjamin;Geoff Bailey;Sean Ulm;John McCarthy;Chelsea Wiseman;Amy Stevens;Jo McDonald
  • 通讯作者:
    Jo McDonald

John McCarthy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John McCarthy', 18)}}的其他基金

Combinatorial Biosynthetic Pathway Engineering
组合生物合成途径工程
  • 批准号:
    EP/X039587/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Research Grant
Operator Analysis and Applications
算子分析及应用
  • 批准号:
    2054199
  • 财政年份:
    2021
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Conference on Multivariable Operator Theory and Function Spaces in Several Variables
多变量算子理论与多变量函数空间会议
  • 批准号:
    2055013
  • 财政年份:
    2021
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
A Database and Analysis of Intergroup Hostility
群体间敌意的数据库和分析
  • 批准号:
    1756369
  • 财政年份:
    2018
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
I-Corps: Patient Leg-Powered Wheelchair Mobility to Promote Wellness
I-Corps:患者腿部动力轮椅移动以促进健康
  • 批准号:
    1743477
  • 财政年份:
    2017
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Operator Theory and Applications
算子理论与应用
  • 批准号:
    1565243
  • 财政年份:
    2016
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Continuing Grant
Computer-Aided Invention of Complex Articulated Systems with Operational Constraints
具有操作约束的复杂铰接系统的计算机辅助发明
  • 批准号:
    1636017
  • 财政年份:
    2016
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Trypanosomatid protein synthesis as a target for novel drug therapies
锥虫蛋白合成作为新型药物治疗的靶点
  • 批准号:
    MR/N017447/1
  • 财政年份:
    2016
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Research Grant
Changes-of mind in target selection for action
行动目标选择的想法改变
  • 批准号:
    1514246
  • 财政年份:
    2015
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Transatlantic SynBio Workshop
跨大西洋合成生物研讨会
  • 批准号:
    BB/L027062/1
  • 财政年份:
    2014
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Virginia Operator Theory and Complex Analysis Meeting
会议:弗吉尼亚算子理论与复分析会议
  • 批准号:
    2327592
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Virginia Operator Theory and Complex Analysis Meeting
弗吉尼亚算子理论与复分析会议
  • 批准号:
    1745256
  • 财政年份:
    2017
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Virginia Operator Theory and Complex Analysis Meeting (VOTCAM)
弗吉尼亚算子理论与复分析会议 (VOTCAM)
  • 批准号:
    1446123
  • 财政年份:
    2014
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Continuing Grant
Virginia Operator Theory and Complex Analysis Meeting (VOTCAM)
弗吉尼亚算子理论与复分析会议 (VOTCAM)
  • 批准号:
    1360591
  • 财政年份:
    2013
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Virginia Operator Theory and Complex Analysis Meeting (VOTCAM)
弗吉尼亚算子理论与复分析会议 (VOTCAM)
  • 批准号:
    1144615
  • 财政年份:
    2011
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Virginia Operator Theory and Complex Analysis Meeting
弗吉尼亚算子理论与复分析会议
  • 批准号:
    0824858
  • 财政年份:
    2008
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Operator Theory and Complex Geometry
算子理论与复几何
  • 批准号:
    0501079
  • 财政年份:
    2005
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Continuing Grant
NSF/CBMS Regional Conference in the Mathematical Sciences-"Nonhomogeneous Harmonic Analysis, Weights, and Applications to Problems in Complex Analysis and Operator Theory"
NSF/CBMS 数学科学区域会议 - “非齐次调和分析、权重以及在复分析和算子理论中问题的应用”
  • 批准号:
    0121284
  • 财政年份:
    2002
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Operator Theory and Complex Analysis
算子理论与复分析
  • 批准号:
    0096001
  • 财政年份:
    1999
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Multivariable Operator Theory and Several Complex Variables
多变量算子理论和多个复变量
  • 批准号:
    9970518
  • 财政年份:
    1999
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了