Colloidal Assembly of Biodegradable Multifunctional Nanoclusters

可生物降解多功能纳米团簇的胶体组装

基本信息

  • 批准号:
    0968038
  • 负责人:
  • 金额:
    $ 33.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-04-15 至 2014-03-31
  • 项目状态:
    已结题

项目摘要

0968038JohnstonIntellectual Merit:A major challenge in nanotechnology is to design stable particles smaller than 100 nm with multifunctionality, and in particular, strong optical and magnetic properties. It is difficult to achieve the required particle morphology in the common approach of atomic growth guided by surfactants. Thus, a robust and flexible alternative will be developed to assemble ~5 nm nanoparticle building blocks physically into multifunctional nanoclusters. This colloidal kinetic and interfacial assembly concept will be developed to obtain simultaneously sizes below 100 nm and extremely high loadings (80%) of gold and iron oxide particles to produce strong optical (NIR absorbance) and magnetic (magnetic moment/volume and spin-spin relaxivity, r2) properties. In addition, these clusters will disassemble back into the original primary nanoparticles upon breakdown of biodegradable polymer stabilizers, which is very important for their translation to the biomedical field. Specifically, nanoclusters with high loadings of closely paced gold and iron oxide nanoparticles will be formed by tuning the colloidal interactions to control the cluster growth, size, and morphology. Weakly adsorbed polymer stabilizers will favor much higher inorganic particle loadings than in the case of equilibrium self-assembly, as well as cluster biodegradation. The spatial orientation of each type of nanoparticle in the cluster will be analyzed by high resolution TEM and TEM tomography at various tilt angles for a variety of nanoparticle compositions, surface coatings and stablilizing polymers. The NIR surface plasmon resonance and the spin-spin magnetic relaxivity will be measured and explained in terms of the cluster morphology. The cluster de-aggregation will be monitored in solution with spectroscopy and dynamic light scattering and in live cells with hyperspectral optical imaging and transmission electron microscopy. Broader Impact: This robust kinetic assembly platform for the design of biodegradable nanoclusters with high inorganic particle loadings for strong multifunctional properties will offer broad opportunities in microelectronics, sensors, imaging and optoelectronics. The simplicity and flexibility of this colloidal approach to form novel classes of nanoclusters will likely spawn numerous experimental and theoretical studies to understand the relationship between the optical/magnetic properties and nanocluster morphology. Furthermore, the optical/magnetic nanoparticles can provide solutions to one of the major challenges of modern medicine efficient delivery of therapeutics and molecular specific treatment of pathology with real-time imaging (photoacoustic imaging and MRI) for guidance and monitoring. The biodegradation of nanoclusters into primary nanoparticles can overcome the major roadblock in nanotechnology that is toxicity upon accumulation in humans and in the broader environment. A key theme will be to show young students that engineering can play a major role in improving health care, by integrating scientific concepts in chemistry and biology to address practical problems. The PIs will develop educational material, laboratory experiments and provide student teachers for the nationally renowned UTeach Outreach program, which provides undergraduate students to serve as volunteer instructors for science lessons in the Austin Independent School District. In the UTeach Young Scientists Summer Camps, rising sixth grade students from heavily Hispanic elementary Schools will come to University of Texas for one week to participate in hands-on inquiry-based science lessons that stress academic rigor. The PIs will add an engineering component to the science lessons and the summer camp to complement current efforts in chemistry and biology.
0968038 Johnston智力优点:纳米技术的一个主要挑战是设计具有多功能性的小于100 nm的稳定颗粒,特别是具有强的光学和磁性。通常的表面活性剂引导原子生长的方法很难获得所需的粒子形态。因此,将开发一种稳健且灵活的替代方案,以将约5 nm的纳米颗粒构建块物理组装成多功能纳米团簇。将开发这种胶体动力学和界面组装概念,以同时获得低于100 nm的尺寸和极高的金和氧化铁颗粒负载量(80%),以产生强的光学(NIR吸收)和磁性(磁矩/体积和自旋-自旋弛豫率,r2)特性。此外,这些簇在可生物降解的聚合物稳定剂分解后将分解回原始的初级纳米颗粒,这对于它们向生物医学领域的转化非常重要。 具体而言,将通过调整胶体相互作用以控制簇生长、尺寸和形态来形成具有高负载的紧密排列的金和氧化铁纳米颗粒的纳米簇。弱吸附的聚合物稳定剂将有利于更高的无机颗粒负载比在平衡自组装的情况下,以及集群生物降解。簇中每种类型的纳米颗粒的空间取向将通过高分辨率TEM和TEM断层扫描在各种倾斜角下针对各种纳米颗粒组合物、表面涂层和稳定聚合物进行分析。近红外表面等离子体共振和自旋自旋磁弛豫率将被测量和解释的集群形态。将在溶液中用光谱学和动态光散射以及在活细胞中用高光谱光学成像和透射电子显微镜监测簇的解聚。更广泛的影响:这种强大的动力学组装平台,用于设计具有高无机颗粒负载量的可生物降解纳米团簇,以实现强大的多功能特性,将为微电子,传感器,成像和光电子学提供广泛的机会。这种胶体方法的简单性和灵活性,以形成新的类别的纳米团簇可能会产生大量的实验和理论研究,以了解光学/磁性和纳米团簇形态之间的关系。此外,光学/磁性纳米颗粒可以提供现代医学的主要挑战之一的解决方案,有效地递送治疗剂和病理学的分子特异性治疗,并使用实时成像(光声成像和MRI)进行指导和监测。纳米团簇生物降解成初级纳米颗粒可以克服纳米技术中的主要障碍,即在人类和更广泛的环境中积累时的毒性。 一个关键的主题将是向年轻学生展示工程可以在改善医疗保健方面发挥重要作用,通过将化学和生物学中的科学概念结合起来解决实际问题。PI将开发教育材料,实验室实验,并为全国知名的UTeach推广计划提供学生教师,该计划为本科生提供奥斯汀独立学区科学课程的志愿者教师。在UTeach青年科学家夏令营中,来自西班牙裔小学的六年级学生将来到德克萨斯大学参加为期一周的实践探究式科学课程,强调学术严谨性。 PI将在科学课程和夏令营中增加工程部分,以补充目前在化学和生物学方面的努力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keith Johnston其他文献

Non-linear cavitation cloud oscillations in High-Intensity Focused Ultrasound
高强度聚焦超声中的非线性空化云振荡
Teacher learning and policy intention: selected findings from an evaluation of a large‐scale programme of professional development in the Republic of Ireland
教师学习和政策意图:爱尔兰共和国大规模专业发展计划评估的选定结果
  • DOI:
    10.1080/02619760903247292
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Damian Murchan;A. Loxley;Keith Johnston
  • 通讯作者:
    Keith Johnston
Cavitation cloud translation in focused ultrasound
聚焦超声中的空化云平移
A Kaleidoscope of Meaning: Colour in 'Don't Look Now'
意义万花筒:《现在别看》中的色彩
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keith Johnston;Sarah Street
  • 通讯作者:
    Sarah Street
Exploring the Evolution of Educational Technology Policy in Ireland: From Catching-Up to Pedagogical Maturity
探索爱尔兰教育技术政策的演变:从追赶到教学成熟
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    O. Mcgarr;Keith Johnston
  • 通讯作者:
    Keith Johnston

Keith Johnston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keith Johnston', 18)}}的其他基金

Stabilization Mechanism of Emulsions and Latexes in CO2
乳液和乳胶在 CO2 中的稳定机理
  • 批准号:
    9905531
  • 财政年份:
    1999
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant
Polymeric Surfactants in Supercritical Fluids
超临界流体中的聚合物表面活性剂
  • 批准号:
    9626828
  • 财政年份:
    1996
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Continuing Grant
Relationship Between Molecular Interactions and Morphology For Polymers Interacting With Compressed Fluid Mixtures.
聚合物与压缩流体混合物相互作用的分子相互作用和形态之间的关系。
  • 批准号:
    9218769
  • 财政年份:
    1993
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant
IUC Project: Adjustable Micelles in Supercritical Fluids
IUC 项目:超临界流体中的可调节胶束
  • 批准号:
    8900819
  • 财政年份:
    1989
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Continuing Grant
Industry/University Cooperative Project: Polarity of Super- critical Fluid Solvents
产学合作项目:超临界流体溶剂的极性
  • 批准号:
    8513784
  • 财政年份:
    1986
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Continuing Grant
Research Initiation: Selective Molecular Interactions in Supercritical Fluid Extraction
研究启动:超临界流体萃取中的选择性分子相互作用
  • 批准号:
    8306327
  • 财政年份:
    1983
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant

相似国自然基金

晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
  • 批准号:
    21171046
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Fellowship
NSF PRFB FY23: Effects of bioengineering on community assembly and ecosystem functioning in a soil microbial community
NSF PRFB FY23:生物工程对土壤微生物群落的群落组装和生态系统功能的影响
  • 批准号:
    2305961
  • 财政年份:
    2024
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Fellowship Award
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
  • 批准号:
    24K21101
  • 财政年份:
    2024
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
BatCAT - Battery Cell Assembly Twin
BatCAT - 电池组装双胞胎
  • 批准号:
    10110057
  • 财政年份:
    2024
  • 资助金额:
    $ 33.49万
  • 项目类别:
    EU-Funded
CAREER: Intensifying multi-material additive manufacturing using advective assembly
职业:使用平流装配强化多材料增材制造
  • 批准号:
    2339472
  • 财政年份:
    2024
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Continuing Grant
Assembly of Novel Branched Ionic Polymers: Chirality Induction and 2D Heterostructures
新型支化离子聚合物的组装:手性感应和二维异质结构
  • 批准号:
    2404081
  • 财政年份:
    2024
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant
Deciphering and Directing Hierarchical Self-Assembly in Hybrid Chiral Films
破译和指导混合手性薄膜中的分层自组装
  • 批准号:
    2344586
  • 财政年份:
    2024
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant
Amplification of chiral recognition and discrimination among amino-acid-based nanoscale ions during assembly induced by electrostatic interaction
静电相互作用诱导组装过程中氨基酸纳米级离子之间手性识别和辨别的放大
  • 批准号:
    2309886
  • 财政年份:
    2024
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Continuing Grant
Revolutionary Rotors: A Robotic Flywheel Assembly Line
革命性转子:机器人飞轮装配线
  • 批准号:
    10098069
  • 财政年份:
    2024
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了