Polyethylenimine Redox Polymers for Bioelectrocatalysis

用于生物电催化的聚乙烯亚胺氧化还原聚合物

基本信息

  • 批准号:
    0967988
  • 负责人:
  • 金额:
    $ 32.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

0967988SchmidtkeFuel cells convert chemical energy directly into electricity through an oxidation reaction at the anode and a reduction reaction at the cathode. In enzymatic biofuel cells, traditional fuel cell catalysts (e.g. Pt, Pd, Ru) are replaced by fuel oxidizing enzymes (e.g. Glucose Oxidase,Alcohol Dehydrogenase, Fructose Dehydrogenase) at the anode and oxygen reducing enzymes (e.g. Laccase, Bilirubin Oxidase) at the cathode. Currently the main limitations of enzymatic biofuel cells are low power output and limited lifetimes. Principal Investigators David Schmidtke and Daniel Glatzhofer at the University of Oklahoma, Norman Campus have hypothesized on the limiting factors. In enzymatic biofuel cells, the redox center of most enzymes is buried in the protein shell and electrically inaccessible. Thus most redox enzymes do not normally exchange electrons with an electrode. They propose to increase the power output of enzymatic biofuel cells by synthesizing redox polymers that increase the rate of electron transfer (i.e. current flow)between the redox enzymes and electrodes. These novel PEI-based redox polymers produce high currents by efficiently collecting and shuttling electrons between the enzyme¡¦s redox center and the electrode surface. These polymers contain metal species, ferrocene compounds, linked to the polymer. Tuning the system will require synthesis of polymers with different lengths of spacer arms. The PIs are targeting a 20-200 fold improvement in power output. Enzymatic biofuel cells will not solve the nation¡¦s energy needs. However, as the demand for portable energy increases, there develops a need for alternative renewable energy sources. Enzymatic biofuel cells are an attractive energy conversion technology because they operate at mild temperatures of20-40?aC and under neutral pH and consume substrates such as sugars that are readily available in biological systems. Because of their inherent selectivities, enzyme based anodes and cathodes can operate in the same compartment without separating membranes thereby reducing size and weight. They have potential applications for both in vivo (e.g. pacemakers, implantable sensors) and ex vivo (e.g. remote site sensing, mobile electronics) systems. The investigators intend to use their research as a vehicle to increase the attractiveness of the field to potential students. Their belief, based on studies, is that a student¡¦s attitude toward science and his achievement in science improves with hands-on experiences. To help increase the likelihood that students will continue their studies in science and engineering, proposed educational activities with research opportunities include Research Opportunities for Undergraduate students and Summer Research Internships for Underrepresented Groups, matched with Research Opportunities for Middle School Teachers.
0967988SCHMIDTKEFUEL细胞通过阳极处的氧化反应和阴极的还原反应直接转化化学能。在酶生物燃料细胞中,传统的燃料电池催化剂(例如PT,PD,RU)被燃料氧化酶(例如葡萄糖氧化酶,葡萄糖氧化酶,酒精脱氢酶,果糖脱氢酶)在阳极和氧气减少酶(例如,均质酶,bilirirubin氧化酶)的ACTACHOPAPASED。目前,酶促生物燃料细胞的主要局限性是低功率输出和有限的寿命。俄克拉荷马大学诺曼校区的首席调查员戴维·施密特克(David Schmidtke)和丹尼尔·格拉茨霍夫(Daniel Glatzhofer)假设了限制因素。在酶促的生物燃料细胞中,大多数酶的氧化还原中心都建在蛋白质壳中,并无法接近电。大多数氧化还原酶通常不会与电子交换电子。他们建议通过合成氧化还原聚合物来增加氧化还原酶和电极之间的电子转移速率(即电流流)来增加酶生物燃料细胞的功率输出。这些新型的基于PEI的氧化还原聚合物通过有效收集和穿梭电子在酶氧化还原中心和电极表面之间产生高电流。这些聚合物含有与聚合物相关的金属物种,二茂二烯化合物。调整系统将需要合成具有不同长度的间隔臂的聚合物。 PI的目标是动力输出的20-200倍。酶生物燃料细胞不会解决国家的能源需求。但是,随着对便携式能源的需求增加,需要替代可再生能源。酶促生物燃料细胞是一种有吸引力的能量转化技术,因为它们在20-40?ac的轻度温度下运行,在中性pH值下进行,并且消耗了诸如生物系统中易于使用的糖基质。由于其继承选择性,基于酶的阳极和阴极可以在同一隔室中运行,而无需分开机制,从而减小了尺寸和重量。它们在体内(例如起搏器,可植入传感器)和Ex Vivo(例如远程站点敏感性,移动电子)系统都有潜在的应用。调查人员打算将他们的研究用作工具,以提高该领域对潜在学生的吸引力。他们基于研究的信念是,学生对科学的态度及其在科学方面的成就可以通过动手经验改善。为了帮助增加学生在科学和工程领域的研究的可能性,提出的具有研究机会的教育活动包括针对本科生的研究机会和为代表性不足的小组提供的夏季研究实习,并与中学教师的研究机会相匹配。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Schmidtke其他文献

“Everyone was wasted”! Insights from adolescents’ alcohol experience narratives
“每个人都被浪费了”!来自青少年酗酒经历叙述的见解!
Increasing physical activity among Indonesian adolescents: a social marketing intervention reflection
增加印度尼西亚青少年的体力活动:社会营销干预的反思
  • DOI:
    10.1108/ejm-05-2023-0416
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    David Schmidtke;Mai Nguyen;S. Rundle‐Thiele
  • 通讯作者:
    S. Rundle‐Thiele
Co-designing social marketing programs with “bottom of the pyramid” citizens
与“金字塔底层”公民共同设计社会营销计划
  • DOI:
    10.1177/1470785320968029
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3
  • 作者:
    David Schmidtke;S. Rundle‐Thiele;K. Kubacki;G. Burns
  • 通讯作者:
    G. Burns
A review of social marketing interventions in low- and middle-income countries (2010–2019)
低收入和中等收入国家社会营销干预措施回顾(2010-2019)
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Schmidtke;K. Kubacki;S. Rundle‐Thiele
  • 通讯作者:
    S. Rundle‐Thiele

David Schmidtke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Schmidtke', 18)}}的其他基金

CAREER: Biosensors Based on Carbon Nanotube-Redox Polymer Composites
职业:基于碳纳米管-氧化还原聚合物复合材料的生物传感器
  • 批准号:
    0547619
  • 财政年份:
    2006
  • 资助金额:
    $ 32.73万
  • 项目类别:
    Continuing Grant

相似国自然基金

氧化还原稠环共轭聚合物储能正极与高效稳定水系锌离子电池
  • 批准号:
    22375170
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
具有氧还原及水氧化双反应通道共轭微孔聚合物的构建及其光催化全合成过氧化氢研究
  • 批准号:
    22375076
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
有机聚合物半导体光催化剂用于光催化二氧化碳还原研究
  • 批准号:
    22311540011
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    国际(地区)合作与交流项目
聚合物-分子催化剂相互作用微环境增强二氧化碳还原系统
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Engineered redox polymers for catalytic water purification
用于催化水净化的工程氧化还原聚合物
  • 批准号:
    FT230100526
  • 财政年份:
    2024
  • 资助金额:
    $ 32.73万
  • 项目类别:
    ARC Future Fellowships
Synthetic control over redox-state and morphology in electronically complex coordination polymers
电子复杂配位聚合物中氧化还原态和形态的合成控制
  • 批准号:
    2315924
  • 财政年份:
    2023
  • 资助金额:
    $ 32.73万
  • 项目类别:
    Standard Grant
Development of high performance thermocells based on redox polymers
基于氧化还原聚合物的高性能热电池的开发
  • 批准号:
    23K13634
  • 财政年份:
    2023
  • 资助金额:
    $ 32.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conjugated and redox active polymers and hybrid materials
共轭和氧化还原活性聚合物和杂化材料
  • 批准号:
    RGPIN-2022-04319
  • 财政年份:
    2022
  • 资助金额:
    $ 32.73万
  • 项目类别:
    Discovery Grants Program - Individual
Charge Transporting Supramolecular pi-Donor/Acceptor Arrays Based on Redox-Active Metallacycles, Metal-Organic Cages, and Daisy-Chain Coordination Polymers
基于氧化还原活性金属环、金属有机笼和菊花链配位聚合物的电荷传输超分子π供体/受体阵列
  • 批准号:
    2203985
  • 财政年份:
    2022
  • 资助金额:
    $ 32.73万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了