FRG: Collaborative Research: Modeling, Computation, and Analysis of Optical Responses of Nano Structures
FRG:合作研究:纳米结构光学响应的建模、计算和分析
基本信息
- 批准号:0968360
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The interdisciplinary FRG team will develop mathematical techniques and computational methods for the light-matter interactions for nanoscale structures motivated by recent scientic and industrial applications. Critical issues on multi-physics modeling, multi-scale simulations as well as mathematical analysis of the coupled Maxwell and Schrodinger equations will be investigated. Our proposed mathematical modeling techniques and computational methods will address key scientific challenges in applied mathematics including multi-physics modeling, multi-scale computation, density functional theory, efficient numerical solution of Maxwell's equations, and well-posedness of the associated new nonlinear PDE models. Advanced tools in computational electromagnetics for simulations and optimizations of nanophotonic structures will be developed, with a specific focus on those tools that enable multi-physics and multi-scale computations. The initial efforts will be directed towards developing tools that enable efficient simulations of dynamically modulated photonic structures, where there is a critical need to overcome the numerical challenges resulting from the large time-scale separations between the electronic and the optical processes. The development here will contribute directly to increasing speed and reducing energy consumption in optical information processing applications. Partners in this FRG will collaborate to enable the applications of multi-physics simulations towards impacts in practical technologies such as sensing or energy conversion. The capabilities for controlling light are of paramount importances for many aspects of modern society, and have applications in critical areas such as energy, sensing and information technology. The use of nanophotonic structures, where individual structure is at the nanoscale, is at the very forefront in our quest to control light. Nano-optics is a fundamental and vigorously growing technology with diverse applications including fast optical switches, plasmonic materials, photonic nanocircuits, optical microscopy, Ramam spectroscopy, and optical metamaterials. The recent enabling technologies of high-performance computing facilities and modern lithographic techniques have led to a substantial surge of applications of subwavelength and nano structures, establishing nano-optics as one of the most rapidly advancing areas of current research in optical science. A grand challenge encountered when optical fields meet nano structures is a fundamental mismatch in scales, which gives rise to phenomena not encountered in conventional optics and presents a challenge in interacting with such structures. The future development of nano-optics will clearly benefit from the availability of an efficient computational modeling tool and mathematical analysis techniques. The computational tools developed in this program will allow us to better understand and design these structures, potentially leading to faster information processing devices that consume less power, sensors with higher sensitivity, and solar cells with better conversion efficiency.
跨学科的FRG团队将开发数学技术和计算方法,用于最近的科学和工业应用所激发的纳米结构的光物质相互作用。将研究多物理场建模、多尺度模拟以及耦合麦克斯韦和薛定谔方程的数学分析等关键问题。我们提出的数学建模技术和计算方法将解决应用数学中的关键科学挑战,包括多物理建模,多尺度计算,密度泛函理论,麦克斯韦方程的有效数值解,以及相关的新的非线性偏微分方程模型的适定性。将开发用于模拟和优化纳米光子结构的计算电磁学的先进工具,特别关注那些能够实现多物理和多尺度计算的工具。最初的努力将是针对开发工具,使动态调制的光子结构,有一个关键的需要,以克服电子和光学过程之间的大时间尺度分离所造成的数值挑战的有效模拟。这方面的发展将直接有助于提高光信息处理应用的速度和降低能耗。FRG的合作伙伴将共同合作,将多物理场模拟应用于传感或能量转换等实用技术的影响。控制光的能力对现代社会的许多方面都至关重要,并在能源,传感和信息技术等关键领域得到应用。纳米光子结构的使用,其中单个结构处于纳米级,是我们寻求控制光的最前沿。纳米光学是一项基础性的、蓬勃发展的技术,具有多种应用,包括快速光学开关、等离子体材料、光子纳米电路、光学显微镜、拉曼光谱和光学超材料。最近的高性能计算设备和现代光刻技术的使能技术已经导致了亚波长和纳米结构的应用的大幅激增,建立纳米光学作为当前光学科学研究中最快速发展的领域之一。当光场遇到纳米结构时遇到的一个巨大挑战是尺度上的根本不匹配,这引起了传统光学中没有遇到的现象,并在与这种结构的相互作用中提出了挑战。纳米光学的未来发展将明显受益于有效的计算建模工具和数学分析技术的可用性。该计划中开发的计算工具将使我们能够更好地理解和设计这些结构,可能导致更快的信息处理设备,消耗更少的功率,具有更高灵敏度的传感器和具有更好转换效率的太阳能电池。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Di Liu其他文献
Association of CDC25 phosphatase family polymorphisms with the efficacy/toxicity of platinum-based chemotherapy in Chinese advanced NSCLC patients.
CDC25磷酸酶家族多态性与中国晚期NSCLC患者铂类化疗疗效/毒性的关联。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.3
- 作者:
W. Cai;Chang Chen;Xinzheng Li;Jinyun Shi;Qian;Di Liu;Yifeng Sun;L. Hou;Xueying Zhao;Shaohua Gu;Qihan Wu;Hongyan Chen;Wei Zhang;Li Jin;D. Lu;K. Fei;B. Su;J. Qian - 通讯作者:
J. Qian
"When He Feels Cold, He Goes to the Seahorse"—Blending Generative AI into Multimaterial Storymaking for Family Expressive Arts Therapy
“当他感到寒冷时,他就去找海马”——将生成式人工智能融入多材料故事制作中,用于家庭表达艺术治疗
- DOI:
10.1145/3613904.3642852 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Di Liu;Hanqing Zhou;Pengcheng An - 通讯作者:
Pengcheng An
Global mosquito virome profiling and mosquito spatial diffusion pathways revealed by marker-viruses
标记病毒揭示的全球蚊子病毒组分析和蚊子空间扩散途径
- DOI:
10.1101/2022.09.24.509300 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Lu Zhao;Ping Yu;Chenyan Shi;Lijia Jia;Atoni Evans;Xiaoyu Wang;Qun Wu;Guodian Xiong;Zhaoyan Ming;F. Salazar;B. Agwanda;D. Bente;Fei Wang;Di Liu;Zhiming Yuan;Han Xia - 通讯作者:
Han Xia
Molecular Cloning and Characterization of E2f3b in Pig
猪 E2f3b 的分子克隆和表征
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Wen;Xu Lin;J. Zhuo;Dongjie Zhang;Xiu;Di Liu - 通讯作者:
Di Liu
Stochastic Simulation of the Cell Cycle Model for Budding Yeast
芽殖酵母细胞周期模型的随机模拟
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Di Liu - 通讯作者:
Di Liu
Di Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Di Liu', 18)}}的其他基金
Multiscale Modeling and Computation of Nano-Optics
纳米光学的多尺度建模与计算
- 批准号:
1720002 - 财政年份:2017
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Numerical Methods for Multiscale Modeling of Nano-Optics
纳米光学多尺度建模的数值方法
- 批准号:
1418959 - 财政年份:2014
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Mathematics and Computation of Nonlinear Problems in Diffractive Optics Modeling
衍射光学建模中非线性问题的数学和计算
- 批准号:
1211292 - 财政年份:2012
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
International Conference on Interdisciplinary Applied and Computational Mathematics
跨学科应用与计算数学国际会议
- 批准号:
1129181 - 财政年份:2011
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
CAREER: Modeling, Analysis and Computation of Stochastic Intracellular Reactions
职业:随机细胞内反应的建模、分析和计算
- 批准号:
0845061 - 财政年份:2009
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
AMC-SS: Analysis and Computation of Multi-Scale Stochastic Chemical Kinetic Systems with Application to Genetic Regulatory Networks
AMC-SS:多尺度随机化学动力学系统的分析和计算及其在遗传调控网络中的应用
- 批准号:
0609315 - 财政年份:2006
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant