Mathematics and Computation of Nonlinear Problems in Diffractive Optics Modeling
衍射光学建模中非线性问题的数学和计算
基本信息
- 批准号:1211292
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our proposed mathematical modeling techniques and computational methods will address key scientific challenges in applied mathematics including numerical solution of nonlinear Maxwell's equations in second harmonic generation with strong nonlinearities; multiscale modeling of second harmonic generation via Density Functional Theory, numerical solution of the inverse diffraction problems; and optimal design of guided mode grating resonance filters. We will initiate a mathematical modeling study of second harmonic generation for metal and diectric interfaces. A significant challenge is to explore novel multiscale, multi-physics models involving to capture the useful microscopic effects. Novel computational methods and mathematical modeling techniques will be developed to solve the underlying PDE problems. When nonlinear optical effects become significantly strong, numerical methods based on the linearization of the essentially nonlinear problem are inadequate. Novel techniques must be explored to develop stable numerical schemes. New robust solution methods for the associated optimal design and inverse problems will also be developed to investigate the critical ill-posedness of the model problems.The goal of this project is to develop new mathematical models and computational algorithms that meet the basic research needs and provide the necessary modeling tools for scientists in the areas of diffractive optics and nonlinear optics. The proposed project has the potential not only to evolve new science, but also to lead to novel mathematics and computational methods. The capabilities for controlling and manipulating light are of paramount significance for many areas of our society, and have applications in critical areas such as energy, sensing, imaging, and information technology. Nonlinear diffractive optics is a fundamental and vigorously growing technology with diverse applications including fast optical switches, plasmonic materials, optical computing, optical microscopy, spectroscopy, and optical metamaterials. The recent enabling high-performance computing facilities and modern lithographic techniques have led to a substantial surge of applications of subwavelength structures, establishing diffractive optics and nonlinear diffractive optics as two of the most rapidly advancing areas of modern optical science. The continuous technology developments have given rise to exciting innovation such as "invisibility cloaks" and "superlenses"; near-field or super-resolution optical microscopy, and other resonance phenomena. The future development and analysis of modern optics devices and theory will benefit from the availability of efficient computational modeling tools and mathematical analysis techniques. Our computational models and optimal design tools will provide an inexpensive and easily controllable virtual prototype of the structures in the design and fabrication of optical devices, potentially leading to faster information processing devices that consume less power, sensors with higher sensitivity, and nonlinear optical devices with high conversion efficiency.
我们提出的数学建模技术和计算方法将解决应用数学中的关键科学挑战,包括非线性麦克斯韦方程的数值解,在二次谐波产生强非线性;通过密度泛函理论,逆衍射问题的数值解,二次谐波产生的多尺度建模;和导模光栅谐振滤波器的优化设计。我们将开始一个金属和电介质界面二次谐波产生的数学模型研究。一个重大的挑战是探索新的多尺度,多物理模型,涉及捕捉有用的微观效应。将开发新的计算方法和数学建模技术来解决潜在的PDE问题。 当非线性光学效应变得非常强时,基于本质上非线性问题的线性化的数值方法是不够的。必须探索新的技术来开发稳定的数值方案。本项目的目标是发展新的数学模型和计算算法,以满足基本研究的需要,并为衍射光学和非线性光学领域的科学家提供必要的建模工具。该项目不仅有可能发展新的科学,而且还可能导致新的数学和计算方法。控制和操纵光的能力对于我们社会的许多领域都具有至关重要的意义,并且在能源,传感,成像和信息技术等关键领域中具有应用。非线性衍射光学是一项基础且蓬勃发展的技术,具有多种应用,包括快速光学开关、等离子体材料、光学计算、光学显微镜、光谱学和光学超材料。近年来,高性能计算设备和现代光刻技术的发展,使亚波长结构的应用激增,使衍射光学和非线性衍射光学成为现代光学科学发展最快的两个领域。技术的不断发展带来了令人兴奋的创新,如“隐形斗篷”和“超级透镜”;近场或超分辨率光学显微镜,以及其他共振现象。现代光学器件和理论的未来发展和分析将受益于有效的计算建模工具和数学分析技术的可用性。我们的计算模型和优化设计工具将在光学器件的设计和制造中提供廉价且易于控制的结构虚拟原型,可能导致更快的信息处理设备,消耗更少的功率,具有更高灵敏度的传感器,以及具有高转换效率的非线性光学器件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Di Liu其他文献
Association of CDC25 phosphatase family polymorphisms with the efficacy/toxicity of platinum-based chemotherapy in Chinese advanced NSCLC patients.
CDC25磷酸酶家族多态性与中国晚期NSCLC患者铂类化疗疗效/毒性的关联。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.3
- 作者:
W. Cai;Chang Chen;Xinzheng Li;Jinyun Shi;Qian;Di Liu;Yifeng Sun;L. Hou;Xueying Zhao;Shaohua Gu;Qihan Wu;Hongyan Chen;Wei Zhang;Li Jin;D. Lu;K. Fei;B. Su;J. Qian - 通讯作者:
J. Qian
"When He Feels Cold, He Goes to the Seahorse"—Blending Generative AI into Multimaterial Storymaking for Family Expressive Arts Therapy
“当他感到寒冷时,他就去找海马”——将生成式人工智能融入多材料故事制作中,用于家庭表达艺术治疗
- DOI:
10.1145/3613904.3642852 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Di Liu;Hanqing Zhou;Pengcheng An - 通讯作者:
Pengcheng An
Global mosquito virome profiling and mosquito spatial diffusion pathways revealed by marker-viruses
标记病毒揭示的全球蚊子病毒组分析和蚊子空间扩散途径
- DOI:
10.1101/2022.09.24.509300 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Lu Zhao;Ping Yu;Chenyan Shi;Lijia Jia;Atoni Evans;Xiaoyu Wang;Qun Wu;Guodian Xiong;Zhaoyan Ming;F. Salazar;B. Agwanda;D. Bente;Fei Wang;Di Liu;Zhiming Yuan;Han Xia - 通讯作者:
Han Xia
Molecular Cloning and Characterization of E2f3b in Pig
猪 E2f3b 的分子克隆和表征
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Wen;Xu Lin;J. Zhuo;Dongjie Zhang;Xiu;Di Liu - 通讯作者:
Di Liu
Stochastic Simulation of the Cell Cycle Model for Budding Yeast
芽殖酵母细胞周期模型的随机模拟
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Di Liu - 通讯作者:
Di Liu
Di Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Di Liu', 18)}}的其他基金
Multiscale Modeling and Computation of Nano-Optics
纳米光学的多尺度建模与计算
- 批准号:
1720002 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Numerical Methods for Multiscale Modeling of Nano-Optics
纳米光学多尺度建模的数值方法
- 批准号:
1418959 - 财政年份:2014
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
International Conference on Interdisciplinary Applied and Computational Mathematics
跨学科应用与计算数学国际会议
- 批准号:
1129181 - 财政年份:2011
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Modeling, Computation, and Analysis of Optical Responses of Nano Structures
FRG:合作研究:纳米结构光学响应的建模、计算和分析
- 批准号:
0968360 - 财政年份:2010
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
CAREER: Modeling, Analysis and Computation of Stochastic Intracellular Reactions
职业:随机细胞内反应的建模、分析和计算
- 批准号:
0845061 - 财政年份:2009
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
AMC-SS: Analysis and Computation of Multi-Scale Stochastic Chemical Kinetic Systems with Application to Genetic Regulatory Networks
AMC-SS:多尺度随机化学动力学系统的分析和计算及其在遗传调控网络中的应用
- 批准号:
0609315 - 财政年份:2006
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
- 批准号:
2309626 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
CRCNS: Understanding Single-Neuron Computation Using Nonlinear Model Optimization
CRCNS:使用非线性模型优化理解单神经元计算
- 批准号:
10612187 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
CRCNS: Understanding Single-Neuron Computation Using Nonlinear Model Optimization
CRCNS:使用非线性模型优化理解单神经元计算
- 批准号:
10668533 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Design theory for estimation and control of nonlinear systems by using symbolic computation for rings of differential operators
微分算子环符号计算非线性系统估计与控制的设计理论
- 批准号:
21K21285 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of a General Framework for Nonlinear Prediction Using Auto-Cumulants: Theory, Methodology, and Computation
使用自累积量开发非线性预测的通用框架:理论、方法和计算
- 批准号:
2131233 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Modeling, Analysis, and Computation in Nonlinear Elasticity
非线性弹性建模、分析和计算
- 批准号:
2006586 - 财政年份:2020
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Active phase-control spin wave logic computation elements with nonlinear phase shift
具有非线性相移的主动相控自旋波逻辑计算元件
- 批准号:
20K20535 - 财政年份:2020
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Nonlinear functions, codes and quantum computation
非线性函数、代码和量子计算
- 批准号:
RGPIN-2015-06250 - 财政年份:2019
- 资助金额:
$ 26万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Geometric Models: Algorithms, Analysis, and Computation
非线性几何模型:算法、分析和计算
- 批准号:
1908267 - 财政年份:2019
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Nonlinear functions, codes and quantum computation
非线性函数、代码和量子计算
- 批准号:
RGPIN-2015-06250 - 财政年份:2018
- 资助金额:
$ 26万 - 项目类别:
Discovery Grants Program - Individual