Singularities in Characteristic Zero and Singularities in Positive Characteristic

特征零奇点和正特征奇点

基本信息

项目摘要

The program proposed by Karl Schwede aims to study relations between higher dimensional algebraic geometry and positive characteristic commutative algebra. Over the past 30 years, a dictionary has been developed linking, by reduction to characteristic p, seemingly unrelated concepts coming from these two distinct areas of mathematics. However, the dictionary as it exists seems incomplete. For example, while there is a good positive characteristic analog of ``log terminal singularities'', there is no known analog of ``terminal singularities''. Schwede will attempt to fill in these gaps. Furthermore, inspired by this dictionary, Schwede will explore both the local and global geometry of varieties in positive characteristic and characteristic zero. One problem that Schwede plans to explore is how the test ideal (a positive characteristic analog of the multiplier ideal) behaves under birational maps. Another problem that Schwede plans to study is whether Du Bois singularities deform.Algebraic geometry is a centrally important and very active field of mathematics with strong ties to many other areas including fields as disparate as string theory and coding theory. Explicitly, algebraic geometry is the study of geometric objects (called algebraic varieties) made up of the solutions to polynomial equations (such as y = x^2). At the most basic level, Schwede plans to study relations between the geometry of these algebraic varieties, with algebraic properties of the equations themselves. In the past, this interplay has led to new insights in both the geometric and algebraic theories. In algebraic geometry, one of the major areas of research in the last 30 years has been the classification of algebraic varieties -- the "minimal model program". In order to accomplish this, one must study singular varieties (an example of a singular variety is the solution set to the quadric cone, z^2 = x^2 + y^2). The particular questions that Schwede proposes to study will hopefully lead to a deeper understanding of the varieties and the singularities that appear in this classification.
Karl Schwede提出的计划旨在研究高维代数几何与正特征交换代数之间的关系。 在过去的 30 年里,一本字典被开发出来,通过简化为特征 p,将来自这两个不同数学领域的看似不相关的概念联系起来。 然而,现有的词典似乎并不完整。 例如,虽然“对数终端奇点”有一个良好的正特性类似物,但没有已知的“终端奇点”类似物。 Schwede 将尝试填补这些空白。 此外,受这本词典的启发,Schwede 将探索正特征和特征零的品种的局部和全局几何形状。 Schwede 计划探索的一个问题是测试理想(乘数理想的正特征模拟)在双有理映射下的表现。 施韦德计划研究的另一个问题是杜波依斯奇点是否变形。代数几何是一个非常重要且非常活跃的数学领域,与许多其他领域(包括弦理论和编码理论等不同领域)有着密切的联系。 明确地说,代数几何是对由多项式方程(例如 y = x^2)的解组成的几何对象(称为代数簇)的研究。 在最基本的层面上,施韦德计划研究这些代数簇的几何形状与方程本身的代数性质之间的关系。 过去,这种相互作用导致了几何和代数理论的新见解。 在代数几何中,近30年的主要研究领域之一是代数簇的分类——“最小模型程序”。 为了实现这一目标,必须研究奇异簇(奇异簇的一个例子是二次锥的解集,z^2 = x^2 + y^2)。 施韦德建议研究的特定问题有望使人们更深入地了解该分类中出现的品种和奇点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karl Schwede其他文献

The dualizing complex of F-injective and Du Bois singularities
F-内射和杜波依斯奇点的对偶复形
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    B. Bhatt;Linquan Ma;Karl Schwede
  • 通讯作者:
    Karl Schwede
Test ideals in non-Q-Gorenstein rings
在非 Q-Gorenstein 环中测试理想值
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karl Schwede
  • 通讯作者:
    Karl Schwede
A simple characterization of Du Bois singularities
杜波依斯奇点的简单表征
  • DOI:
    10.1112/s0010437x07003004
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Karl Schwede
  • 通讯作者:
    Karl Schwede
Progress in Commutative Algebra 2 : Closures, Finiteness and Factorization
交换代数进展 2:闭包、有限性和因式分解
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    U. Krause;Kevin Tucker;J. Coykendall;Sean Sather;Christopher A. Francisco;Christina Eubanks;Florian Enescu;Karl Schwede;L. Klingler;Ela Celikbas;Sean Sather;Laura Sheppardson;B. Olberding;Jason G. Boynton;J. Watkins;R. Schwarz;Neil Epstein;S. Chapman;J. Vassilev;Sandra Spiroff;Sarah Glaz
  • 通讯作者:
    Sarah Glaz
Equivariant total ring of fractions and factoriality of rings generated by semniinvariants
由半不变量生成的分数的等变总环和环的阶乘
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Bhargav Bhatt;Karl Schwede;Shunsuke Takagi;Mitsuyasu Hashimoto
  • 通讯作者:
    Mitsuyasu Hashimoto

Karl Schwede的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karl Schwede', 18)}}的其他基金

A Unified Perspective on Singularities in Commutative Algebra and Algebraic Geometry
交换代数和代数几何奇异性的统一视角
  • 批准号:
    2101800
  • 财政年份:
    2021
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Continuing Grant
RTG: Algebra, Geometry, and Topology at the University of Utah
RTG:犹他大学的代数、几何和拓扑
  • 批准号:
    1840190
  • 财政年份:
    2019
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Continuing Grant
Commutative Algebra: Singularities in All Characteristics with Geometric Applications
交换代数:所有特征中的奇点及其几何应用
  • 批准号:
    1801849
  • 财政年份:
    2018
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
CAREER: Test Ideals and the Geometry of Projective Varieties in Positive Characteristic
职业:检验理想和正特征中射影多样性的几何
  • 批准号:
    1501102
  • 财政年份:
    2014
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
  • 批准号:
    1501115
  • 财政年份:
    2014
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Continuing Grant
CAREER: Test Ideals and the Geometry of Projective Varieties in Positive Characteristic
职业:检验理想和正特征中射影多样性的几何
  • 批准号:
    1252860
  • 财政年份:
    2013
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
  • 批准号:
    1265261
  • 财政年份:
    2013
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Continuing Grant
Singularities in Characteristic Zero and Singularities in Positive Characteristic
特征零奇点和正特征奇点
  • 批准号:
    1064485
  • 财政年份:
    2010
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0703505
  • 财政年份:
    2007
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Fellowship Award

相似海外基金

F-singularities and singularities in birational geometry in characteristic zero(Fostering Joint International Research)
F-奇点和特征零双有理几何中的奇点(促进国际联合研究)
  • 批准号:
    15KK0152
  • 财政年份:
    2016
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
F-singularities and singularities in birational geometry in characteristic zero
F-奇点和特征零双有理几何中的奇点
  • 批准号:
    26400039
  • 财政年份:
    2014
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
  • 批准号:
    1523233
  • 财政年份:
    2014
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
  • 批准号:
    1501115
  • 财政年份:
    2014
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
  • 批准号:
    1265256
  • 财政年份:
    2013
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
  • 批准号:
    1265261
  • 财政年份:
    2013
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Continuing Grant
FRG: Collaborative research: Birational geometry and singularities in zero and positive characteristic
FRG:合作研究:双有理几何以及零和正特征中的奇点
  • 批准号:
    1265285
  • 财政年份:
    2013
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
  • 批准号:
    1265263
  • 财政年份:
    2013
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
  • 批准号:
    1265289
  • 财政年份:
    2013
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Invariants of Singularities in Zero and Positive Characteristic
零特征和正特征中奇点的不变量
  • 批准号:
    1068190
  • 财政年份:
    2011
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了