A Unified Perspective on Singularities in Commutative Algebra and Algebraic Geometry

交换代数和代数几何奇异性的统一视角

基本信息

  • 批准号:
    2101800
  • 负责人:
  • 金额:
    $ 41.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This research project brings together different perspectives on singularities in commutative algebra and algebraic geometry. Both algebraic geometry and commutative algebra concern shapes defined by polynomial equations, such as the parabola that is the graph of the equation y = x^2. Not every shape is so smooth; some, such as the graph of the equation y^2 = x^3, have sharp points or other singularities. Study of geometric singularities is important in mathematics and has application to mathematical models for a wide range of important physical, social, and economic systems. Researchers have long known that important types of singularities in classical geometric settings also appear naturally when studying geometric shapes in modular (or clock) arithmetic. In fact, algebraic geometry in the clock arithmetic setting is a key component of modern communications infrastructure. This project aims to develop a theory of singularities in mixed characteristic, a middle ground between the classical and clock arithmetic worlds (that possesses aspects of both). The project also aims to develop geometric applications of this theory and to develop open-source software to study singularities in commutative algebra and algebraic geometry. Techniques developed in number theory and arithmetic geometry have given rise to numerous recent breakthrough results in mixed characteristic commutative algebra. This project aims to use these methods to develop a singularity theory suitable for studying higher dimensional birational algebraic geometry in mixed characteristic, which would also facilitate translating many of the successes of positive characteristic commutative algebra to this setting. The project additionally aims to develop an analog of F-pure or log canonical singularities (and their centers) in mixed characteristic, to study fundamental groups of singularities, and to study boundary divisors in this setting.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个研究项目汇集了交换代数和代数几何中奇点的不同观点。代数几何和交换代数都关注由多项式方程定义的形状,例如抛物线是方程y = x^2的图形。并不是每个形状都是如此光滑的;有些形状,比如方程y^2 = x^3的图形,有尖锐的点或其他奇点。几何奇点的研究在数学中很重要,并应用于广泛的重要物理,社会和经济系统的数学模型。研究人员早就知道,在模(或时钟)算术中研究几何形状时,经典几何环境中重要类型的奇点也会自然出现。事实上,代数几何中的时钟运算设置是现代通信基础设施的关键组成部分。这个项目的目的是发展一个混合特性的奇点理论,一个古典和时钟算术世界之间的中间地带(拥有两者的方面)。该项目还旨在开发这一理论的几何应用,并开发开源软件来研究交换代数和代数几何中的奇点。在数论和算术几何中发展起来的技术在混合特征交换代数中产生了许多最近的突破性结果。这个项目的目的是使用这些方法来开发一个奇点理论适合于研究高维双有理代数几何的混合特征,这也将有助于翻译的许多成功的正特征交换代数这一设置。该项目的另一个目的是开发一个类似的F-纯或对数正则奇点(及其中心)的混合特性,研究基本群体的奇点,并研究在此设置的边界因子。该奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
RationalMaps, a package for Macaulay2
RationalMaps,Macaulay2 的软件包
  • DOI:
    10.2140/jsag.2022.12.17
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bott, C. J.;Hassanzadeh, Seyed Hamid;Schwede, Karl;Smolkin, Daniel
  • 通讯作者:
    Smolkin, Daniel
An analogue of adjoint ideals and PLT singularities in mixed characteristic
混合特征中伴随理想和PLT奇点的类比
  • DOI:
    10.1090/jag/797
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Ma, Linquan;Schwede, Karl;Tucker, Kevin;Waldron, Joe;Witaszek, Jakub
  • 通讯作者:
    Witaszek, Jakub
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karl Schwede其他文献

The dualizing complex of F-injective and Du Bois singularities
F-内射和杜波依斯奇点的对偶复形
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    B. Bhatt;Linquan Ma;Karl Schwede
  • 通讯作者:
    Karl Schwede
Test ideals in non-Q-Gorenstein rings
在非 Q-Gorenstein 环中测试理想值
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karl Schwede
  • 通讯作者:
    Karl Schwede
A simple characterization of Du Bois singularities
杜波依斯奇点的简单表征
  • DOI:
    10.1112/s0010437x07003004
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Karl Schwede
  • 通讯作者:
    Karl Schwede
Progress in Commutative Algebra 2 : Closures, Finiteness and Factorization
交换代数进展 2:闭包、有限性和因式分解
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    U. Krause;Kevin Tucker;J. Coykendall;Sean Sather;Christopher A. Francisco;Christina Eubanks;Florian Enescu;Karl Schwede;L. Klingler;Ela Celikbas;Sean Sather;Laura Sheppardson;B. Olberding;Jason G. Boynton;J. Watkins;R. Schwarz;Neil Epstein;S. Chapman;J. Vassilev;Sandra Spiroff;Sarah Glaz
  • 通讯作者:
    Sarah Glaz
Equivariant total ring of fractions and factoriality of rings generated by semniinvariants
由半不变量生成的分数的等变总环和环的阶乘
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Bhargav Bhatt;Karl Schwede;Shunsuke Takagi;Mitsuyasu Hashimoto
  • 通讯作者:
    Mitsuyasu Hashimoto

Karl Schwede的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karl Schwede', 18)}}的其他基金

RTG: Algebra, Geometry, and Topology at the University of Utah
RTG:犹他大学的代数、几何和拓扑
  • 批准号:
    1840190
  • 财政年份:
    2019
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Continuing Grant
Commutative Algebra: Singularities in All Characteristics with Geometric Applications
交换代数:所有特征中的奇点及其几何应用
  • 批准号:
    1801849
  • 财政年份:
    2018
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Standard Grant
CAREER: Test Ideals and the Geometry of Projective Varieties in Positive Characteristic
职业:检验理想和正特征中射影多样性的几何
  • 批准号:
    1501102
  • 财政年份:
    2014
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
  • 批准号:
    1501115
  • 财政年份:
    2014
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Continuing Grant
CAREER: Test Ideals and the Geometry of Projective Varieties in Positive Characteristic
职业:检验理想和正特征中射影多样性的几何
  • 批准号:
    1252860
  • 财政年份:
    2013
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
  • 批准号:
    1265261
  • 财政年份:
    2013
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Continuing Grant
Singularities in Characteristic Zero and Singularities in Positive Characteristic
特征零奇点和正特征奇点
  • 批准号:
    1064485
  • 财政年份:
    2010
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Standard Grant
Singularities in Characteristic Zero and Singularities in Positive Characteristic
特征零奇点和正特征奇点
  • 批准号:
    0969145
  • 财政年份:
    2010
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0703505
  • 财政年份:
    2007
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Fellowship Award

相似国自然基金

Supply Chain Collaboration in addressing Grand Challenges: Socio-Technical Perspective
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
  • 批准号:
    2339753
  • 财政年份:
    2024
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Standard Grant
Creating cosmopolitan rural communities through Japanese crafts: a comparative perspective with Portugal and Brazil
通过日本手工艺创建国际化农村社区:与葡萄牙和巴西的比较视角
  • 批准号:
    24K21000
  • 财政年份:
    2024
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Women’s Careers in STEM: a Multi-method Project from an Indigenous Perspective
STEM 领域的女性职业:从原住民角度看的多方法项目
  • 批准号:
    24K16421
  • 财政年份:
    2024
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Continuing Grant
A network perspective for ecosystem responses to plant invasion
生态系统对植物入侵反应的网络视角
  • 批准号:
    DP240102143
  • 财政年份:
    2024
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Discovery Projects
Nuclear deformation and symmetry breaking from an ab-initio perspective
从头算角度看核变形和对称性破缺
  • 批准号:
    MR/Y034007/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Fellowship
CAREER: Habitability of the Hadean Earth - A South African perspective
职业:冥古宙地球的宜居性——南非的视角
  • 批准号:
    2336044
  • 财政年份:
    2024
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Continuing Grant
CAREER: Rethinking Spiking Neural Networks from a Dynamical System Perspective
职业:从动态系统的角度重新思考尖峰神经网络
  • 批准号:
    2337646
  • 财政年份:
    2024
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Continuing Grant
Revisiting the Educational Tourism at War Heritage Sites: An Asian Perspective Beyond Dark Tourism
重温战争遗址的教育旅游:超越黑暗旅游的亚洲视角
  • 批准号:
    23K28339
  • 财政年份:
    2024
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Applying a complex systems perspective to investigate the relationship between choreography and agent-based modeling as tools for scientific sense-making
应用复杂系统的视角来研究编排和基于代理的建模之间的关系,作为科学意义构建的工具
  • 批准号:
    2418539
  • 财政年份:
    2024
  • 资助金额:
    $ 41.23万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了