Analysis and Observations of Particle Size Distribution in Supercell Thunderstorms
超级单体雷暴中粒径分布的分析与观测
基本信息
- 批准号:0969172
- 负责人:
- 金额:$ 36.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-15 至 2014-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Supercell-type thunderstorms, which embody a complex arrangement of long-lasting rotating updrafts and intense downdrafts, are known to be responsible for generating most intense tornadoes. However, considerable uncertainty exists regarding mechanisms culminating in the actual focus and downward extension of stormscale rotation in the form of a damaging tornadic vortex. Some working hypotheses link this process to the strength, thermodynamic stability (temperature) and spatial configuration of downdrafts in the lowest reaches of these storms, which are in-turn dependent on rates of evaporative cooling influenced by the type and size distributions of falling hydrometeors (chiefly rain and hail.) Rigorous attempts have not yet been made to investigate the range of these microphysical precipitation characteristics beneath supercell thunderstorms. The overarching goal of this project is to i) deploy multiple mobile disdrometers (instruments that measure the characteristic sizes and fallspeeds of precipitation particles) beneath supercell thunderstorms during the second Verification of the Origins of Rotation in Tornadoes EXperiment (VORTEX2; a field program conducted over the central United States known as "tornado alley") in Spring 2010, ii) conduct a comprehensive analysis of both existing and newly-obtained disdrometer observations to determine microphysical characteristics in tornadic compared to nontornadic supercell thunderstorms, and iii) relate these results to contemporaneous high-resolution polarimetric Doppler radar observations. Both disdrometers and polarimetric Doppler radar can detect (or in the case of radar, infer) the size distributions of falling hydrometeors. While preliminary analyses have provided some insights about hydrometeor distributions and their impacts on evolution of supercell storm features, a comprehensive analysis of a number of cases using well-placed high-resolution measurements has yet to be conducted and will be achieved in the course of this work.Intellectual Merit: This project will augment our knowledge about microphysical processes within supercell thunderstorms and may lead to improved short-term forecasts and warnings of life-threatening severe weather. Since VORTEX2 hosts the largest number of polarimetric Doppler radars to ever monitor the full lifecycle of supercell thunderstorms, this experiment is an ideal laboratory to address these scientific questions. At present, the lack of skill in forecasting and understanding microphysical processes is largely due to both the inadequate representation of microphysical processes and the lack of measurements. This mobile deployment of disdrometers in VORTEX2 will provide by far the most comprehensive dataset of disdrometer and radar observations and analysis in supercell thunderstorms ever collected. Broader Impact: The improvement of short-term forecasts and warnings of severe weather is strongly linked to the representation and understanding of the microphysical processes, which will be substantially extended by this work. Results will be shared with the modeling community and integrated with other, existing VORTEX2 data sets. Results will also be disseminated through presentations at conferences, seminars, and workshops as well as through publications in relevant professional journals. Additional Broader Impacts will come through direct involvement of graduate students in collection and analysis of field datasets, as well as through enhanced classroom education at both undergraduate and graduate levels.
超级单体型雷暴是一种由长期旋转的上升气流和强烈的下降气流组成的复杂结构,是产生最强烈龙卷风的原因。 然而,相当大的不确定性存在的机制,最终在实际的重点和向下延伸的风暴尺度旋转的形式,一个破坏性的龙卷风涡旋。 一些工作的假设链接这个过程的强度,热力学稳定性(温度)和空间配置的下降气流在最低达到这些风暴,这反过来又取决于蒸发冷却率的影响类型和大小分布的降水(主要是雨和冰雹)。 还没有严格的尝试,以调查超级单体雷暴下的这些微物理降水特征的范围。 该项目的首要目标是i)部署多个移动的流量计在第二次龙卷风旋转起源验证实验中,超级单体雷暴下的(测量降水粒子特征尺寸和下降速度的仪器)(涡2;在2010年春季在美国中部进行的称为“龙卷风通道”的实地项目),ii)对现有的和新获得的disdrometer观测结果进行全面分析,以确定龙卷风与非龙卷风超级单体雷暴的微物理特征,以及iii)将这些结果与同期的高分辨率偏振多普勒雷达观测结果联系起来。 散射计和偏振多普勒雷达都可以探测(或在雷达的情况下,推断)下落的水凝物的尺寸分布。 虽然初步分析提供了关于水凝物分布及其对超级单体风暴特征演变的影响的一些见解,但还需要利用适当位置的高分辨率测量对一些情况进行全面分析,并将在这项工作中完成。该项目将增加我们对超级单体雷暴内微物理过程的了解,并可能导致改善短期预测和生命警告。威胁恶劣天气。 由于VORTEX 2拥有最多的偏振多普勒雷达来监测超级单体雷暴的整个生命周期,因此该实验是解决这些科学问题的理想实验室。 目前,缺乏预测和理解微物理过程的技能主要是由于微物理过程的代表性不足和缺乏测量。 VORTEX 2中的这种移动的disdrometers部署将提供迄今为止收集的超级单体雷暴中最全面的disdrometer和雷达观测和分析数据集。更广泛的影响:恶劣天气短期预报和警报的改进与对微物理过程的表述和理解密切相关,这项工作将大大扩展这方面的工作。 结果将与建模社区共享,并与其他现有的VORTEX 2数据集集成。 还将通过在会议、研讨会和讲习班上的介绍以及通过在相关专业期刊上发表文章来传播成果。 其他更广泛的影响将通过研究生直接参与实地数据集的收集和分析,以及通过加强本科和研究生两级的课堂教育来实现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katja Friedrich其他文献
18. The quality of political media coverage
18. 政治媒体报道的质量
- DOI:
10.1515/9783110238174.351 - 发表时间:
2014 - 期刊:
- 影响因子:2.9
- 作者:
Olaf Jandura;Katja Friedrich - 通讯作者:
Katja Friedrich
Katja Friedrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katja Friedrich', 18)}}的其他基金
Collaborative Research: WINTRE-MIX: Winter Precipitation Type Research Multi-scale Experiment
合作研究:WINTRE-MIX:冬季降水类型研究多尺度实验
- 批准号:
2114011 - 财政年份:2021
- 资助金额:
$ 36.34万 - 项目类别:
Continuing Grant
Collaborative Research: Further Investigations from the Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE)
合作研究:对种子和自然地形冬季云的进一步调查:爱达荷州实验(SNOWIE)
- 批准号:
2015829 - 财政年份:2020
- 资助金额:
$ 36.34万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Understanding of the Initiation and Subsequent Dynamical and Microphysical Characteristics of Deep Convective Storms during RELAMPAGO
合作研究:对 RELAMPAGO 期间深对流风暴的起始和随后的动力和微物理特征的综合理解
- 批准号:
1661707 - 财政年份:2017
- 资助金额:
$ 36.34万 - 项目类别:
Continuing Grant
Collaborative Research: Large Hail Accumulations in Thunderstorms
合作研究:雷暴中的大量冰雹聚集
- 批准号:
1661583 - 财政年份:2017
- 资助金额:
$ 36.34万 - 项目类别:
Standard Grant
Collaborative Research: SNOWIE: Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment
合作研究:SNOWIE:种子和自然地形冬季云:爱达荷州实验
- 批准号:
1546963 - 财政年份:2016
- 资助金额:
$ 36.34万 - 项目类别:
Continuing Grant
Improving Understanding of Convection Initiation in Nocturnal Environments During PECAN (Plains Elevated Convection at Night) Using High-Resolution Ensemble Data Assimilation
使用高分辨率集合数据同化提高对 PECAN(夜间平原高对流)期间夜间环境中对流启动的理解
- 批准号:
1541624 - 财政年份:2015
- 资助金额:
$ 36.34万 - 项目类别:
Continuing Grant
A 10-yr Climatology (1999-2009) on 4-dimensional Precipitation Characteristics Using Weather Radar Observations in the European Alps
利用欧洲阿尔卑斯山天气雷达观测的 4 维降水特征十年气候学(1999-2009)
- 批准号:
0937035 - 财政年份:2010
- 资助金额:
$ 36.34万 - 项目类别:
Continuing Grant
Collaborative Research: SGER--Measurements of Particle Size and Fall Velocity Distributions within Supercell Thunderstorms
合作研究:SGER——超级单体雷暴中颗粒尺寸和下落速度分布的测量
- 批准号:
0910424 - 财政年份:2009
- 资助金额:
$ 36.34万 - 项目类别:
Standard Grant
Estimation of Cloud Properties in Three-dimension (3D) from Cloud Resolving Data Assimilation
从云解析数据同化估计云的三维 (3D) 属性
- 批准号:
0514399 - 财政年份:2005
- 资助金额:
$ 36.34万 - 项目类别:
Continuing Grant
相似海外基金
Study of heating and particle acceleration on collisionless shocks with ground experiment, theory, and high energy resolution X-ray observations
利用地面实验、理论和高能量分辨率 X 射线观测研究无碰撞冲击的加热和粒子加速
- 批准号:
23H01211 - 财政年份:2023
- 资助金额:
$ 36.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Particle Acceleration Region in Solar Flares Revealed by New-Generation Multi-Wavelength Observations
新一代多波长观测揭示太阳耀斑中的粒子加速区域
- 批准号:
23K03455 - 财政年份:2023
- 资助金额:
$ 36.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ULF Waves and inner-magnetosphere wave-particle interactions: modelling satellite and ground-based observations
ULF 波和磁层内波粒相互作用:模拟卫星和地面观测
- 批准号:
RGPIN-2015-06569 - 财政年份:2022
- 资助金额:
$ 36.34万 - 项目类别:
Discovery Grants Program - Individual
US-Japan sounding rocket project to establish new strategy for the study of magnetic reconnection and particle acceleration with solar flare observations in X-rays
美日探空火箭项目将建立新战略,利用 X 射线中的太阳耀斑观测来研究磁重联和粒子加速
- 批准号:
21KK0052 - 财政年份:2021
- 资助金额:
$ 36.34万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
GEM: Multipoint Observations and Global Modeling of Energetic Particle Deep Penetration into the Low L Region of Earth's Inner Magnetosphere
GEM:高能粒子深度穿透地球内磁层低 L 区域的多点观测和全局建模
- 批准号:
2140934 - 财政年份:2021
- 资助金额:
$ 36.34万 - 项目类别:
Standard Grant
ULF Waves and inner-magnetosphere wave-particle interactions: modelling satellite and ground-based observations
ULF 波和磁层内波粒相互作用:模拟卫星和地面观测
- 批准号:
RGPIN-2015-06569 - 财政年份:2021
- 资助金额:
$ 36.34万 - 项目类别:
Discovery Grants Program - Individual
ULF Waves and inner-magnetosphere wave-particle interactions: modelling satellite and ground-based observations
ULF 波和磁层内波粒相互作用:模拟卫星和地面观测
- 批准号:
RGPIN-2015-06569 - 财政年份:2020
- 资助金额:
$ 36.34万 - 项目类别:
Discovery Grants Program - Individual
GEM: Multipoint Observations and Global Modeling of Energetic Particle Deep Penetration into the Low L Region of Earth's Inner Magnetosphere
GEM:高能粒子深度穿透地球内磁层低 L 区域的多点观测和全局建模
- 批准号:
2010150 - 财政年份:2020
- 资助金额:
$ 36.34万 - 项目类别:
Standard Grant
Study on oxygen ion energization in the near-Earth magnetotail using multi-spacecraft observations and particle tracing simulation
利用多航天器观测和粒子追踪模拟研究近地磁尾氧离子赋能
- 批准号:
20H01957 - 财政年份:2020
- 资助金额:
$ 36.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ULF Waves and inner-magnetosphere wave-particle interactions: modelling satellite and ground-based observations
ULF 波和磁层内波粒相互作用:模拟卫星和地面观测
- 批准号:
RGPIN-2015-06569 - 财政年份:2019
- 资助金额:
$ 36.34万 - 项目类别:
Discovery Grants Program - Individual