Pattern avoidance in dynamical systems
动态系统中的模式避免
基本信息
- 批准号:1001046
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is being cofunded by the Combinatorics Program and EPSCoR.The PI proposes to explore a novel connection between pattern avoidance and dynamical systems. The source of this unexpected connection is based on the following idea. Given a map from a totally ordered set to itself, consider the finite sequences (orbits) that are obtained by iterating the map, starting from di®erent initial points. The relative order of the points in the orbit determines a permutation. It turns out that, in the case of piecewise monotone maps on one-dimensional intervals, there are some permutations that do not occur in any orbit. These are called forbidden patterns. If a pattern is forbidden for a given map, then any longer permutation that contains it as a consecutive pattern is forbidden as well. This property relates the study of forbidden patterns of maps to the study of permutations avoiding consecutive patterns, a subject that has received attention in the combinatorics literature, including several papers by the PI. One of the goals of this new approach to study dynamical systems from a combinatorial perspective is to better understand the set of forbidden patterns of a map, including how its properties are related to the properties of the map, how many patterns there are of each given length, how to algorithmically find these patterns, and which sets of patterns can be forbidden patterns of a map. The PI has already made some progress towards this goal by answering some of the above questions for shift systems and logistic maps.
该提案由组合数学计划和EPSCoR共同资助。PI建议探索模式避免和动力系统之间的新联系。这种意想不到的联系的来源是基于以下想法。给定一个从全序集到自身的映射,考虑从不同的初始点开始迭代映射得到的有限序列(轨道)。轨道中各点的相对顺序决定了一个排列。事实证明,在一维区间上的分段单调映射的情况下,有一些置换不发生在任何轨道上。这些被称为禁忌模式。如果一个模式对于一个给定的映射是禁止的,那么任何包含它作为连续模式的更长的排列也是禁止的。该属性将地图禁止模式的研究与避免连续模式的排列的研究联系起来,这一主题在组合学文献中受到了关注,包括PI的几篇论文。这种从组合角度研究动力系统的新方法的目标之一是更好地理解映射的禁止模式集,包括它的属性如何与映射的属性相关,每个给定长度有多少模式,如何通过算法找到这些模式,以及哪些模式集可以是映射的禁止模式。PI已经在这方面取得了一些进展,回答了上述的一些问题,轮班制度和后勤地图。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergi Elizalde其他文献
A bijection between bargraphs and Dyck paths
- DOI:
10.1016/j.dam.2018.04.018 - 发表时间:
2018-12-31 - 期刊:
- 影响因子:
- 作者:
Emeric Deutsch;Sergi Elizalde - 通讯作者:
Sergi Elizalde
Forbidden patterns and shift systems
- DOI:
10.1016/j.jcta.2007.07.004 - 发表时间:
2008-04-01 - 期刊:
- 影响因子:
- 作者:
José María Amigó;Sergi Elizalde;Matthew B. Kennel - 通讯作者:
Matthew B. Kennel
Subdiagonal and superdiagonal partitions
- DOI:
10.1007/s13370-025-01282-0 - 发表时间:
2025-04-07 - 期刊:
- 影响因子:0.700
- 作者:
M. Archibald;A. Blecher;Sergi Elizalde;A. Knopfmacher - 通讯作者:
A. Knopfmacher
A bijection between 2-triangulations and pairs of non-crossing Dyck paths
2-三角剖分和成对非交叉 Dyck 路径之间的双射
- DOI:
10.1016/j.jcta.2007.03.002 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Sergi Elizalde - 通讯作者:
Sergi Elizalde
On basic forbidden patterns of functions
- DOI:
10.1016/j.dam.2011.04.012 - 发表时间:
2011-07-28 - 期刊:
- 影响因子:
- 作者:
Sergi Elizalde;Yangyang Liu - 通讯作者:
Yangyang Liu
Sergi Elizalde的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergi Elizalde', 18)}}的其他基金
Conferences in Formal Power Series and Algebraic Combinatorics, 2015 and 2016
形式幂级数和代数组合学会议,2015 年和 2016 年
- 批准号:
1500297 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Conference on Permutation Patterns 2010
2010 年排列模式会议
- 批准号:
1003908 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Investigation of a novel ventral pallidum population expressing corticotropin-releasing factor receptor 1
表达促肾上腺皮质激素释放因子受体 1 的新型腹侧苍白球群体的研究
- 批准号:
10677069 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Identifying the Effects of Race-Related Stressors on Laboratory- Induced Stress and Craving among African Americans with Alcohol Use Disorder
确定种族相关压力源对患有酒精使用障碍的非裔美国人实验室诱发的压力和渴望的影响
- 批准号:
10664454 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Role of serotonin brain circuit in the developmental emergence ofinnate fear
血清素脑回路在先天恐惧的发展中的作用
- 批准号:
10664638 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Recruitment of Cerebellar Circuits with Balance Training for Cognitive Rehabilitation in a Mouse Model of Mild Traumatic Brain Injury
在轻度创伤性脑损伤小鼠模型中通过平衡训练募集小脑回路进行认知康复
- 批准号:
10753349 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Adapting and Piloting Behavioral Activation for Veterans with Co-Occurring AUD and Posttraumatic Stress Disorder
为同时患有 AUD 和创伤后应激障碍的退伍军人调整和试点行为激活
- 批准号:
10886182 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
NSF Postdoctoral Fellowship in Biology FY 2022: Evolution of Innate Predator Avoidance Behavior in Flies
2022 财年 NSF 生物学博士后奖学金:果蝇先天回避捕食者行为的演变
- 批准号:
2209293 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Fellowship Award
Investigating the impact of chronic stress on distinct axes of dopamine signaling
研究慢性压力对多巴胺信号传导不同轴的影响
- 批准号:
10825107 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Encoding social arousal within prepronociceptin circuits in the extended amygdala
在扩展杏仁核的前诺西肽环路中编码社会唤起
- 批准号:
10736663 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Transdiagnostic Reward System Dynamics and Social Disconnection in Suicide
跨诊断奖励系统动态和自杀中的社会脱节
- 批准号:
10655760 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:














{{item.name}}会员




