Travel support for an ICTP workshop

ICTP 研讨会的差旅支持

基本信息

  • 批准号:
    1001133
  • 负责人:
  • 金额:
    $ 1.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-05-15 至 2011-04-30
  • 项目状态:
    已结题

项目摘要

This grant will support travel to a workshop and conference being held in Trieste, Italy at the International Center for Theoretical Physics. The topics of the workshop and the conference are in classical commutative algebra, including the study of multiplicities, Hilbert functions, and the integral closure of ideals. The first week will be a series of short courses given by four experts on these topics, while the second week is a research conference with speakers from around the world. Both students and senior faculty will benefit from this meeting.Commutative algebra studies the relationship between algebraic equations, such as polynomial equations, and geometry. This idea goes back to Descartes and the idea of coordinatizing the plane, and has proved to be a powerful tool. A wide range of problems can be put into the context of solving systems of equations. For example, linear algebra studies systems of linear (degree one) equations. Commutative algebra studies the solutions of polynomial or power series equations of higher order by forming an algebraic object consisting of the 'generic' solutions. The algebraic properties of these gen then give insight into the geometric and algebraic nature of the equations. Many classical problems can be phrased in these terms. Seemingly simple questions turn out to be surprisingly complicated. For example, questions such as how many polynomials vanish along a set of points in the plane are equivalent to understanding what is called the Hilbert function of the ideal of polynomials vanishing along these points. Such functions are used to count important data.One of the main themes of this conference and workshop is the study of Hilbert functions and their ramifications. This workshop will introduce young researchers to facets of this field which touch several parts of the subject. Am important aspect of the conference is the world-wide scope of the participants; the workshop is especially devoted to broadening participation by developing countries. The interaction of researchers from the United States with young researchers from developing countries make this a special event.
这笔赠款将用于资助参加在意大利的里雅斯特国际理论物理中心举行的研讨会和会议的旅费。研讨会和会议的主题是在经典的交换代数,包括研究多重性,希尔伯特函数和积分封闭的理想。第一周将是由四位专家就这些主题提供的一系列短期课程,而第二周是一个研究会议,演讲者来自世界各地。学生和资深教师都将从这次会议中受益。交换代数研究代数方程,如多项式方程和几何之间的关系。这个想法可以追溯到笛卡尔和协调平面的想法,并已被证明是一个强大的工具。许多问题都可以放在解方程组的范围内。例如,线性代数研究线性(一次)方程组。交换代数通过形成由“一般”解组成的代数对象来研究高阶多项式或幂级数方程的解。这些根的代数性质,然后洞察到的几何和代数性质的方程。许多经典问题都可以用这些术语来表述。看似简单的问题,结果却出奇的复杂。例如,有多少多项式沿着平面上的一组点沿着消失的问题等价于理解什么是所谓的希尔伯特函数的理想的多项式沿沿着这些点消失。这些函数用于计算重要的数据。这次会议和研讨会的主题之一是希尔伯特函数及其衍生物的研究。本次研讨会将向年轻的研究人员介绍这一领域的各个方面,涉及该主题的几个部分。会议的一个重要方面是与会者的世界范围;讲习班特别致力于扩大发展中国家的参与。来自美国的研究人员与来自发展中国家的青年研究人员的互动使这一活动成为一个特别的活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Craig Huneke其他文献

Order ideals and a generalized Krull height theorem
  • DOI:
    10.1007/s00208-004-0513-6
  • 发表时间:
    2004-08-24
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    David Eisenbud;Craig Huneke;Bernd Ulrich
  • 通讯作者:
    Bernd Ulrich
Upper bound of multiplicity of F-rational rings and F-pure rings
F-有理环和 F-纯环的重数上限
Good ideals of 2-dimensional normal singularities
二维正态奇点的良好理想
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Craig Huneke;. Kei-ichi Watanabe;Kei-ichi Watanabe
  • 通讯作者:
    Kei-ichi Watanabe
The projective dimension of codimension two algebras presented by quadrics
  • DOI:
    10.1016/j.jalgebra.2013.06.038
  • 发表时间:
    2013-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Craig Huneke;Paolo Mantero;Jason McCullough;Alexandra Seceleanu
  • 通讯作者:
    Alexandra Seceleanu
Multiplicity bounds in graded rings
分级环中的重数界限
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Craig Huneke;S. Takagi;Kei-ichi Watanabe
  • 通讯作者:
    Kei-ichi Watanabe

Craig Huneke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Craig Huneke', 18)}}的其他基金

Uniformity in Commutative Algebra
交换代数的一致性
  • 批准号:
    1460638
  • 财政年份:
    2015
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Local Cohomology and Singularities
局部上同调和奇点
  • 批准号:
    1502282
  • 财政年份:
    2015
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Studies in Commutative Algebra
交换代数研究
  • 批准号:
    1259142
  • 财政年份:
    2012
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Studies in Commutative Algebra
交换代数研究
  • 批准号:
    1063538
  • 财政年份:
    2011
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Topics in Commutative Algebra
交换代数主题
  • 批准号:
    0756853
  • 财政年份:
    2008
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Homological Methods and Ideal Closures in Commutative Algebra
交换代数中的同调方法和理想闭包
  • 批准号:
    0244405
  • 财政年份:
    2003
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Problems in Commutative Algebra
交换代数问题
  • 批准号:
    0098654
  • 财政年份:
    2001
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Characteristic p Methods in Commutative Algebra
交换代数中的特征 p 方法
  • 批准号:
    9996155
  • 财政年份:
    1999
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Characteristic p Methods in Commutative Algebra
交换代数中的特征 p 方法
  • 批准号:
    9731512
  • 财政年份:
    1998
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: "Uniform Bounds in Noetherian Rings, The Theory of Tight Closure, and Big Cohen-Macaulay Algebras"
数学科学:“诺特环的一致界、紧闭理论和大科恩-麦考利代数”
  • 批准号:
    9301053
  • 财政年份:
    1993
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

两性离子载体(zwitterionic support)作为可溶性支载体在液相有机合成中的应用
  • 批准号:
    21002080
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
微生物发酵过程的自组织建模与优化控制
  • 批准号:
    60704036
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于Support Vector Machines(SVMs)算法的智能型期权定价模型的研究
  • 批准号:
    70501008
  • 批准年份:
    2005
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An innovative international payment collection platform using fintech and FPS technology to support SMBs with international transactions that could cut fees by 83%
An%20innovative%20international%20 payment%20collection%20platform%20using%20fintech%20and%20FPS%20technology%20to%20support%20SMBs%20with%20international%20transactions%20that%20could%20cut%20fees%20by%2083%
  • 批准号:
    10098770
  • 财政年份:
    2024
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Collaborative R&D
Exploring the Impact of Clinical Diagnosis on Health and Education Outcomes for Children Receiving Special Educational Needs support for Autism
探索临床诊断对接受自闭症特殊教育需求支持的儿童的健康和教育结果的影响
  • 批准号:
    ES/Z502431/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Fellowship
The effectiveness of public support for high-potential businesses
对高潜力企业的公共支持的有效性
  • 批准号:
    ES/Z50256X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Research Grant
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
  • 批准号:
    EP/Y032640/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Research Grant
ICF: Use of Unmanned Aerial vehicles (Medical Drones) to Support Differentiated Service Delivery Models for Elimination of HIV in Uganda
ICF:使用无人机(医疗无人机)支持乌干达消除艾滋病毒的差异化服务提供模式
  • 批准号:
    MR/Y019717/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Research Grant
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
  • 批准号:
    MR/Y020200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Fellowship
Providing Aid to Support STEM Success for Talented, Low-Income Students
为有才华的低收入学生提供 STEM 成功支持
  • 批准号:
    2321667
  • 财政年份:
    2024
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Partial Support of the Condensed Matter and Materials Research Committee
凝聚态与材料研究委员会的部分支持
  • 批准号:
    2337353
  • 财政年份:
    2024
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
  • 批准号:
    2343087
  • 财政年份:
    2024
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
  • 批准号:
    2341110
  • 财政年份:
    2024
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了