Characteristic p Methods in Commutative Algebra
交换代数中的特征 p 方法
基本信息
- 批准号:9996155
- 负责人:
- 金额:$ 24.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-01-01 至 2004-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Craig Huneke其他文献
Order ideals and a generalized Krull height theorem
- DOI:
10.1007/s00208-004-0513-6 - 发表时间:
2004-08-24 - 期刊:
- 影响因子:1.400
- 作者:
David Eisenbud;Craig Huneke;Bernd Ulrich - 通讯作者:
Bernd Ulrich
Upper bound of multiplicity of F-rational rings and F-pure rings
F-有理环和 F-纯环的重数上限
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Craig Huneke;. Kei-ichi Watanabe - 通讯作者:
. Kei-ichi Watanabe
Good ideals of 2-dimensional normal singularities
二维正态奇点的良好理想
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Craig Huneke;. Kei-ichi Watanabe;Kei-ichi Watanabe - 通讯作者:
Kei-ichi Watanabe
The projective dimension of codimension two algebras presented by quadrics
- DOI:
10.1016/j.jalgebra.2013.06.038 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:
- 作者:
Craig Huneke;Paolo Mantero;Jason McCullough;Alexandra Seceleanu - 通讯作者:
Alexandra Seceleanu
Multiplicity bounds in graded rings
分级环中的重数界限
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0.6
- 作者:
Craig Huneke;S. Takagi;Kei-ichi Watanabe - 通讯作者:
Kei-ichi Watanabe
Craig Huneke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Craig Huneke', 18)}}的其他基金
Travel support for an ICTP workshop
ICTP 研讨会的差旅支持
- 批准号:
1001133 - 财政年份:2010
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Homological Methods and Ideal Closures in Commutative Algebra
交换代数中的同调方法和理想闭包
- 批准号:
0244405 - 财政年份:2003
- 资助金额:
$ 24.52万 - 项目类别:
Continuing Grant
Characteristic p Methods in Commutative Algebra
交换代数中的特征 p 方法
- 批准号:
9731512 - 财政年份:1998
- 资助金额:
$ 24.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: "Uniform Bounds in Noetherian Rings, The Theory of Tight Closure, and Big Cohen-Macaulay Algebras"
数学科学:“诺特环的一致界、紧闭理论和大科恩-麦考利代数”
- 批准号:
9301053 - 财政年份:1993
- 资助金额:
$ 24.52万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Implicitization, Residual Intersections, and Differential Methods in Commutative Algebra
交换代数中的隐式化、残差交点和微分方法
- 批准号:
1802383 - 财政年份:2018
- 资助金额:
$ 24.52万 - 项目类别:
Continuing Grant
Recent Developments in Positive Characteristic Methods in Commutative Algebra: Frobenius Operators and Cartier Algebras
交换代数正特征方法的最新进展:Frobenius 算子和 Cartier 代数
- 批准号:
1507908 - 财政年份:2015
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Study on modules over commutative rings by categorical methods
交换环上模的分类方法研究
- 批准号:
26287008 - 财政年份:2014
- 资助金额:
$ 24.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Application of New Methods of Combinatorial Topology to Commutative Algebra
组合拓扑新方法在交换代数中的应用
- 批准号:
25400057 - 财政年份:2013
- 资助金额:
$ 24.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Algebraic K-theory, trace methods, and non-commutative geometry
职业:代数 K 理论、迹方法和非交换几何
- 批准号:
1151577 - 财政年份:2012
- 资助金额:
$ 24.52万 - 项目类别:
Continuing Grant
Prime characteristic methods in commutative algebra
交换代数中的质数特征方法
- 批准号:
EP/I031405/1 - 财政年份:2011
- 资助金额:
$ 24.52万 - 项目类别:
Research Grant
Topological Methods in Commutative Algebra
交换代数中的拓扑方法
- 批准号:
415373-2011 - 财政年份:2011
- 资助金额:
$ 24.52万 - 项目类别:
University Undergraduate Student Research Awards
The applications of derived categories and topological methods to combinatorial commutative algebra
派生范畴和拓扑方法在组合交换代数中的应用
- 批准号:
22540057 - 财政年份:2010
- 资助金额:
$ 24.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of theory of non-commutative partial differential equations by Schwarzian and twistor methods
用 Schwarzian 和扭量方法构造非交换偏微分方程理论
- 批准号:
21540076 - 财政年份:2009
- 资助金额:
$ 24.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)