Periods, L-functions and Transfers for Square Integrable Automorphic Forms

平方可积自守形式的周期、L-函数和传递

基本信息

  • 批准号:
    1001672
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

The PI, Dihua Jiang, has been working on some basic problems related to periods, L-functions and explicit Langlands functorial transfers for square-integrable automorphic forms. He investigates the basic structures of the discrete spectrum of automorphic forms and the related problems on the Langlands functoriality, and establishes explicit formulas for residues or special values of automorphic L-functions. In the local theory, his research attacks the local Langlands conjectures and related basic problems in harmonic analysis of p-adic groups. His long term goal is to understand the general local-global-automorphic principles in the theory of automorphic forms, which reflects one of the basic principles in the arithmetic and number theory.The PI, Dihua Jiang, is an expert in the modern theory of automorphic forms and the Langlands Program. Automorphic forms are functions with abundant symmetries. These symmetries are the guidelines to understand the intrinsic structures of objects in our universe. In Mathematics, these symmetries are common grounds for many different theories such as Geometry, Number Theory, Mathematical Physics, Algebra and Analysis. Hence the modern theory of automorphic forms, essentially the Langlands program, provides the organizing principle for further research in these areas. The research of Dihua Jiang establishes basic structures for automorphic forms and hence contributes essentially to the Langlands program.
PI, Dihua Jiang,研究了关于周期、l函数和平方可积自同构形式的显式Langlands泛函转移的一些基本问题。他研究了自同构形式的离散谱的基本结构和Langlands泛函的相关问题,并建立了自同构l函数的残数或特殊值的显式公式。在局部理论方面,他的研究攻击了p进群调和分析中的局部朗兰兹猜想和相关的基本问题。他的长期目标是了解自同构形式理论中的一般局部-全局自同构原理,它反映了算术和数论的基本原理之一。PI蒋迪华是自同态形式的现代理论和朗兰兹纲领方面的专家。自同构形式是具有丰富对称性的函数。这些对称性是我们理解宇宙中物体内在结构的指南。在数学中,这些对称性是许多不同理论的共同基础,如几何、数论、数学物理、代数和分析。因此,自同构形式的现代理论,本质上是朗兰兹纲领,为这些领域的进一步研究提供了组织原则。蒋迪华的研究建立了自同构形式的基本结构,因此对朗兰兹纲领作出了重大贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dihua Jiang其他文献

Poles of certain residual eisenstein series of classical groups
经典群的某些残差艾森斯坦级数的极点
  • DOI:
    10.2140/pjm.2013.264.83
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Dihua Jiang;Baiying Liu;Lei Zhang
  • 通讯作者:
    Lei Zhang
Automorphic representations, L-functions and applications : progress and prospects : proceedings of a conference honoring Steve Rallis on the occasion of his 60th birthday, the Ohio State University, March 27-30, 2003
自同构表示、L 函数和应用:进展和前景:2003 年 3 月 27-30 日在俄亥俄州立大学举行的纪念 Steve Rallis 60 岁生日的会议记录
  • DOI:
    10.1515/9783110892703
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    J. Cogdell;Dihua Jiang;S. Kudla;D. Soudry;R. Stanton
  • 通讯作者:
    R. Stanton
On The Multiplicity One Theorem for Generic Automorphic Forms of GSp ( 4 )
关于GSp泛型自守形式的重数一定理(4)
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dihua Jiang;D. Soudry
  • 通讯作者:
    D. Soudry
On the non-vanishing of the central value of certain $L$-functions: unitary groups
关于某些$L$函数的中心值的不消失:酉群
On the fundamental automorphic L-functions of SO(2n+1)
关于 SO(2n 1) 的基本自守 L 函数
  • DOI:
    10.1155/imrn/2006/64069
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dihua Jiang
  • 通讯作者:
    Dihua Jiang

Dihua Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dihua Jiang', 18)}}的其他基金

Automorphic Representations and L-Functions
自守表示和 L 函数
  • 批准号:
    2200890
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Some Problems on Fourier Coefficients of Automorphic Forms and L-functions
自守形式和L函数傅里叶系数的一些问题
  • 批准号:
    1901802
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
On the Automorphic Discrete Spectrum of Classical Groups: Constructions and Characterizations
论经典群的自同构离散谱:构造和表征
  • 批准号:
    1600685
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Fourier Coefficients, L-functions, and Endoscopy Correspondences of Automorphic Forms
自守形式的傅里叶系数、L 函数和内窥镜对应
  • 批准号:
    1301567
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
On Square Integrable Automorphic Forms and Related Problems
关于平方可积自守形式及相关问题
  • 批准号:
    0653742
  • 财政年份:
    2007
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
On the Theory of Automorphic Forms and Applications
论自守形式理论及其应用
  • 批准号:
    0400414
  • 财政年份:
    2004
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Topics in the Theory of Automorphic Representations
自守表示理论的主题
  • 批准号:
    0098003
  • 财政年份:
    2001
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Residual Representations, Relative Trace Formulas, Fourier Coefficients of Eisenstein Series
残差表示、相对迹公式、爱森斯坦级数的傅立叶系数
  • 批准号:
    9896257
  • 财政年份:
    1998
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Residual Representations, Relative Trace Formulas, Fourier Coefficients of Eisenstein Series
残差表示、相对迹公式、爱森斯坦级数的傅立叶系数
  • 批准号:
    9803617
  • 财政年份:
    1998
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9508888
  • 财政年份:
    1995
  • 资助金额:
    $ 27万
  • 项目类别:
    Fellowship Award

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
  • 批准号:
    2903298
  • 财政年份:
    2027
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
New substrates and functions for the DYRK protein kinases
DYRK 蛋白激酶的新底物和功能
  • 批准号:
    2894877
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
Adaptive Artificial Receptors for Biomimetic Functions
仿生功能的自适应人工受体
  • 批准号:
    MR/X023303/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Fellowship
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
  • 批准号:
    BB/Y005694/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
New substrates and functions for the DYRK protein kinases
DYRK 蛋白激酶的新底物和功能
  • 批准号:
    BB/Y512527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Training Grant
Norway. Neuropeptide origins; study of neuropeptide functions in choanoflagellates
挪威。
  • 批准号:
    BB/X018512/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
NSF PRFB FY 2023: Impact of Environment-Seagrass-Microbe Interactions on Seagrass Stress Response and Ecosystem Functions
NSF PRFB 2023 财年:环境-海草-微生物相互作用对海草应激反应和生态系统功能的影响
  • 批准号:
    2305691
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Fellowship Award
CAREER: Green Functions as a Service: Towards Sustainable and Efficient Distributed Computing Infrastructure
职业:绿色功能即服务:迈向可持续、高效的分布式计算基础设施
  • 批准号:
    2340722
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Theory and algorithms for a new class of computationally amenable nonconvex functions
一类新的可计算非凸函数的理论和算法
  • 批准号:
    2416250
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
  • 批准号:
    2401152
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了