Some Problems on Fourier Coefficients of Automorphic Forms and L-functions

自守形式和L函数傅里叶系数的一些问题

基本信息

  • 批准号:
    1901802
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

This project focuses on the modern theory of automorphic forms and the Langlands Program. Automorphic Forms are functions with abundant symmetries. These symmetries are the guidelines to understanding the intrinsic structures of objects in our universe. In Mathematics, these symmetries are common grounds for many different theories such as Geometry, Number Theory, Mathematical Physics, Algebra and Analysis. Hence the modern theory of automorphic forms, essentially the Langlands program, provides the organizing principle for further research in these areas. The research of the PI has a goal of establishing basic structures for automorphic forms. The PI will train graduate students and postodcs, and give lectures on his research to broader community, including public lectures, primary lectures and research talks in various occasions and conferences. The PI, Dihua Jiang, will continue his research on the discrete spectrum of square-integrable automorphic forms, L-functions and the Langlands functoriality conjectures. The basic problems that the PI has been investigating are refined structures of the discrete spectrum of automorphic forms on classical groups, analytic and arithmetic properties of automorphic L-functions, and explicit Langlands functorial transfers for square-integrable automorphic forms via automorphic integral transforms. The theory of endoscopy, the existence of which was discovered by R. Langlands in 1980's and confirmed through the fundamental work of B.-C. Ngo and J. Arthur and others via the trace formula approach. On the one hand, the PI intends to study refined structure based on the existence of endoscopy. On the other hand, the PI intends to construct explicit modules for the cuspidal automorphic forms via integral transform with automorphic kernel functions, so that the endoscopic transfers can be realized via integral transforms, Moreover, the PI will develop the theory of twisted automorphic descents that can be used to prove substantially new cases of the global Gan-Gross-Prasad conjecture, establish new higher rank cases of non-vanishing of the central critical value of tensor product $L$-functions. Meanwhile, the PI also plans to develop the local theory, relating basic problems in harmonic analysis of groups over a local filed to the arithmetic data that are given by the local Langlands conjecture. The long term research goal of the PI is to understand the general local-global-automorphic principles in the theory of automorphic forms, which reflects one of the basic principles in the arithmetic and number theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目重点关注现代自守形式理论和朗兰兹纲领。 自守形式是具有丰富对称性的函数。这些对称性是理解宇宙中物体内在结构的指南。在数学中,这些对称性是许多不同理论的共同基础,例如几何、数论、数学物理、代数和分析。 因此,现代自守形式理论,本质上是朗兰兹纲领,为这些领域的进一步研究提供了组织原则。 PI的研究目标是建立自同构的基本结构。 PI将培训研究生和博士后,并向更广泛的社区就其研究进行讲座,包括公开讲座、初级讲座以及在各种场合和会议上的研究讲座。 PI姜迪华将继续研究平方可积自守形式的离散谱、L-函数和朗兰兹函子猜想。 PI 一直在研究的基本问题是经典群上自同构形式离散谱的精化结构、自同构 L 函数的解析和算术性质,以及通过自同构积分变换实现平方可积自同构形式的显式 Langlands 函子传递。内窥镜检查理论的存在是由 R. Langlands 在 1980 年代发现的,并通过 B.-C. 的基础工作得到证实。 Ngo 和 J. Arthur 等人通过迹公式方法。一方面,PI打算基于内窥镜的存在来研究精细结构。另一方面,PI打算通过自同构核函数的积分变换构造尖头自同构形式的显式模块,从而可以通过积分变换实现内窥镜传递,此外,PI将发展扭曲自同构下降理论,该理论可用于证明全局Gan-Gross-Prasad猜想的实质性新案例,建立新的更高秩 张量积 $L$ 函数的中心临界值不消失的情况。同时,PI还计划发展局部理论,将局部域上群调和分析的基本问题与局部朗兰兹猜想给出的算术数据联系起来。 PI 的长期研究目标是了解自同构形式理论中的一般局部-全局-自同构原理,这反映了算术和数论的基本原理之一。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dihua Jiang其他文献

Poles of certain residual eisenstein series of classical groups
经典群的某些残差艾森斯坦级数的极点
  • DOI:
    10.2140/pjm.2013.264.83
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Dihua Jiang;Baiying Liu;Lei Zhang
  • 通讯作者:
    Lei Zhang
Automorphic representations, L-functions and applications : progress and prospects : proceedings of a conference honoring Steve Rallis on the occasion of his 60th birthday, the Ohio State University, March 27-30, 2003
自同构表示、L 函数和应用:进展和前景:2003 年 3 月 27-30 日在俄亥俄州立大学举行的纪念 Steve Rallis 60 岁生日的会议记录
  • DOI:
    10.1515/9783110892703
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    J. Cogdell;Dihua Jiang;S. Kudla;D. Soudry;R. Stanton
  • 通讯作者:
    R. Stanton
On The Multiplicity One Theorem for Generic Automorphic Forms of GSp ( 4 )
关于GSp泛型自守形式的重数一定理(4)
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dihua Jiang;D. Soudry
  • 通讯作者:
    D. Soudry
On the non-vanishing of the central value of certain $L$-functions: unitary groups
关于某些$L$函数的中心值的不消失:酉群
On the fundamental automorphic L-functions of SO(2n+1)
关于 SO(2n 1) 的基本自守 L 函数
  • DOI:
    10.1155/imrn/2006/64069
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dihua Jiang
  • 通讯作者:
    Dihua Jiang

Dihua Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dihua Jiang', 18)}}的其他基金

Automorphic Representations and L-Functions
自守表示和 L 函数
  • 批准号:
    2200890
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
On the Automorphic Discrete Spectrum of Classical Groups: Constructions and Characterizations
论经典群的自同构离散谱:构造和表征
  • 批准号:
    1600685
  • 财政年份:
    2016
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Fourier Coefficients, L-functions, and Endoscopy Correspondences of Automorphic Forms
自守形式的傅里叶系数、L 函数和内窥镜对应
  • 批准号:
    1301567
  • 财政年份:
    2013
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Periods, L-functions and Transfers for Square Integrable Automorphic Forms
平方可积自守形式的周期、L-函数和传递
  • 批准号:
    1001672
  • 财政年份:
    2010
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
On Square Integrable Automorphic Forms and Related Problems
关于平方可积自守形式及相关问题
  • 批准号:
    0653742
  • 财政年份:
    2007
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
On the Theory of Automorphic Forms and Applications
论自守形式理论及其应用
  • 批准号:
    0400414
  • 财政年份:
    2004
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Topics in the Theory of Automorphic Representations
自守表示理论的主题
  • 批准号:
    0098003
  • 财政年份:
    2001
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Residual Representations, Relative Trace Formulas, Fourier Coefficients of Eisenstein Series
残差表示、相对迹公式、爱森斯坦级数的傅立叶系数
  • 批准号:
    9896257
  • 财政年份:
    1998
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Residual Representations, Relative Trace Formulas, Fourier Coefficients of Eisenstein Series
残差表示、相对迹公式、爱森斯坦级数的傅立叶系数
  • 批准号:
    9803617
  • 财政年份:
    1998
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9508888
  • 财政年份:
    1995
  • 资助金额:
    $ 39万
  • 项目类别:
    Fellowship Award

相似海外基金

Problems Related to Fourier Restriction Estimates
与傅里叶限制估计相关的问题
  • 批准号:
    2042109
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Fast and Robust Algorithms for Signal Recovery from Underdetermined Measurements: Generalized Sparse Fourier Transforms, Inverse Problems, and Density Estimation
用于从欠定测量中恢复信号的快速稳健算法:广义稀疏傅里叶变换、反演问题和密度估计
  • 批准号:
    1912706
  • 财政年份:
    2019
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Problems Related to Fourier Restriction Estimates
与傅里叶限制估计相关的问题
  • 批准号:
    1764454
  • 财政年份:
    2018
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Problems Related to Fourier Restriction Estimates
与傅里叶限制估计相关的问题
  • 批准号:
    1854148
  • 财政年份:
    2018
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Cohomological invariants and perturbation problems for Fourier algebras and group algebras
傅里叶代数和群代数的上同调不变量和微扰问题
  • 批准号:
    402153-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
Cohomological invariants and perturbation problems for Fourier algebras and group algebras
傅里叶代数和群代数的上同调不变量和微扰问题
  • 批准号:
    402153-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
Cohomological invariants and perturbation problems for Fourier algebras and group algebras
傅里叶代数和群代数的上同调不变量和微扰问题
  • 批准号:
    402153-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
Large amplitude Fourier transformed voltammetry with advanced data evaluation strategies: a roadmap for tackling stiff problems in electrochemistry
具有先进数据评估策略的大振幅傅立叶变换伏安法:解决电化学难题的路线图
  • 批准号:
    DP120101470
  • 财政年份:
    2012
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Projects
Cohomological invariants and perturbation problems for Fourier algebras and group algebras
傅里叶代数和群代数的上同调不变量和微扰问题
  • 批准号:
    402153-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
On some contact points with the multiple Fourier series and lattice point problems with weights
关于多重傅里叶级数的一些接触点和带有权重的格点问题
  • 批准号:
    22540166
  • 财政年份:
    2010
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了