New developments in hypergeometric equations

超几何方程的新进展

基本信息

  • 批准号:
    1001763
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-15 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

Hypergeometric functions are power series (in one or several variables) whose coefficients satisfy a two-term recursion. Their very definition makes hypergeometric functions amenable to treatment by analytic and combinatorial methods. The study of their differential equations from a D-module theoretic point of view is the subject of this project. A breakthrough in the late 1980s due to Gelfand, Graev, Kapranov and Zelevinsky provided a new connection between hypergeometric functions (in several variables) and the theory of toric varieties, a subfield of algebraic geometry with a strong combinatorial flavor. This link has made available a variety of algebraic, homological and combinatorial tools to study hypergeometric differential equations and their solutions. The goal of this project is to advance the theory of hypergeometric functions and differential equations.The solutions of hypergeometric differential equations comprise a rich and interesting class of functions. Familiar functions, such as the trigonometric functions, belong to this class. The importance of these functions lies in their usefulness, not only within mathematics, but in physics and engineering as well. The present research will provide advances in the theory of hypergeometric differential equations; its underlying philosophy is to view hypergeometric functions as bridges between different areas of mathematics.
超几何函数是幂级数(一个或多个变量),其系数满足两项递归。它们的定义使得超几何函数可以用分析和组合方法来处理。从D-模理论的角度研究它们的微分方程是这个项目的主题。20世纪80年代后期,由于Gelfand,Graev,Kapranov和Zelevinsky的突破,提供了超几何函数(多变量)和复曲面簇理论之间的新联系,这是代数几何的一个子领域,具有强烈的组合风味。这个链接提供了各种代数,同调和组合工具来研究超几何微分方程及其解决方案。本项目的目标是推进超几何函数和微分方程的理论,超几何微分方程的解包含了丰富而有趣的函数类。熟悉的函数,如三角函数,属于这一类。这些函数的重要性在于它们的实用性,不仅在数学中,而且在物理学和工程学中也是如此。本研究将提供超几何微分方程理论的进展,其基本哲学是将超几何函数视为不同数学领域之间的桥梁。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laura Matusevich其他文献

Laura Matusevich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laura Matusevich', 18)}}的其他基金

Texas Women in Mathematics Symposium (TWIMS)
德克萨斯州女性数学研讨会 (TWIMS)
  • 批准号:
    1937317
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
South-Central Combinatorics Conference (CombinaTexas) 2019
2019 年中南部组合学会议(CombinaTexas)
  • 批准号:
    1901444
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
South-Central Combinatorics Conference
中南部组合学会议
  • 批准号:
    1633874
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Multivariate Hypergeometric Functions: Combinatorics and Algebra
多元超几何函数:组合学和代数
  • 批准号:
    1500832
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Texas Algebraic Geometry Symposium: TAGS 2012
德克萨斯代数几何研讨会:TAGS 2012
  • 批准号:
    1203175
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Multivariate Hypergeometric Functions and Equations
多元超几何函数和方程
  • 批准号:
    0703866
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0303232
  • 财政年份:
    2003
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Brunel University London and PB Design and Developments Limited KTP 22_23 R5
伦敦布鲁内尔大学和 PB Design and Developments Limited KTP 22_23 R5
  • 批准号:
    10064693
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Knowledge Transfer Partnership
Developments of cosmic muometric buoy
宇宙测微浮标的进展
  • 批准号:
    23H01264
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New developments in aromatic architect: optimization of structures and spaces and created by pi-conjugated systems and functionalization
芳香建筑师的新发展:结构和空间的优化以及π共轭系统和功能化的创造
  • 批准号:
    23H01944
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
  • 批准号:
    23K03064
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating the role of public transit on health behaviors among older adults with disabilities
调查公共交通对残疾老年人健康行为的作用
  • 批准号:
    10644067
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Dissemination Core
传播核心
  • 批准号:
    10735584
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10762158
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Using Patients' Stated Preferences to Inform and Support Proxy Decision-making during Palliative Treatment: Instrument Development and Evaluation
在姑息治疗期间利用患者陈述的偏好来告知和支持代理决策:仪器开发和评估
  • 批准号:
    10819002
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了