Thermodynamic Formalism, Dynamics and Dimensions
热力学形式主义、动力学和尺寸
基本信息
- 批准号:1001874
- 负责人:
- 金额:$ 23.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project the principal investigator proposes to further advance and develop the methods for investigations of dynamical, statistical and geometrical aspects of Hilbertian hyperbolic discrete groups, random dynamical systems, one-dimensional lattice gasses, geometry, and dynamics of meromorphic transcendental functions, holomorphic endomorphisms of compact complex manifolds, and continuity of Hausdorff measures for conformal iterated function systems and conformal expanding repellers. Aided by concepts and techniques of dynamical systems, ergodic theory, statistical physics, functional analysis, geometric measure theory, complex analysis, probability theory, and algebraic and differential geometry, appropriate forms of thermodynamic formalism, both deterministic and random, for those systems will be constructed and investigated. The project will involve the analysis of transfer operators, Gibbs and equilibrium states, Julia sets of meromorphic functions, and limit sets of Hilbertian discrete groups, as well as Hausdorff measures and dimensions of attractors of graph-directed Markov systems.The fact that the concepts, techniques and methods of the project, while dynamical in essence, are nevertheless created through the interplay of the branches of mathematics and physics indicated above, will have interesting consequences. The project will shed light on these fields themselves, may stimulate the development of techniques and methods in these areas, and in particular, may cause their growth in response to demands coming from the theory of dynamical systems. Along these lines, the project assumes cooperation of the principal investigator with several specialists in those fields. Such joint work is expected to broaden their mutual professional expertise and should give rise to enhancement of the investigated domains. The active involvement of graduate students is an integral part of the proposed work. The students are expected to gradually master the topics of the proposed research, to learn more about geometric measure theory, the theory of transcendental meromorphic and entire functions, algebraic geometry and other subjects, and finally to contribute to the project their own creative work. The proposed research is expected to result in advanced graduate courses and to attract to Denton scholars who by delivering colloquium and seminar lectures will interact with and scientifically stimulate graduate students and faculty in Denton.
在这个项目中,主要研究者建议进一步推进和发展希尔伯特双曲离散群,随机动力系统,一维格子气,几何和亚纯超越函数的动力学,紧致复流形的全纯自同态,保形迭代函数系和保形扩张排斥子的Hausdorff测度的连续性。借助于动力系统的概念和技术,遍历理论,统计物理,泛函分析,几何测度理论,复分析,概率论,代数和微分几何,适当形式的热力学形式主义,确定性和随机,为这些系统将被构建和研究。该项目将涉及转移算子的分析,吉布斯和平衡状态,亚纯函数的Julia集,希尔伯特离散群的极限集,以及图导向马尔可夫系统的吸引子的Hausdorff测度和维数。事实上,该项目的概念,技术和方法,虽然本质上是动态的,然而,通过上述数学和物理学分支的相互作用而产生的,将产生有趣的后果。该项目将阐明这些领域本身,可能会刺激这些领域的技术和方法的发展,特别是,可能会导致它们的增长,以响应来自动力系统理论的需求。沿着这些思路,该项目假定主要调查员与这些领域的若干专家合作。这种联合工作预计将扩大他们的共同专业知识,并应导致加强调查领域。研究生的积极参与是拟议工作的一个组成部分。希望学生逐步掌握拟研究的课题,了解更多几何测度理论、超越亚纯函数和整函数理论、代数几何等学科知识,最终为项目贡献自己的创造性工作。拟议的研究预计将导致高级研究生课程,并吸引丹顿学者谁通过提供座谈会和研讨会讲座将互动,并科学地刺激研究生和教师在丹顿。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mariusz Urbanski其他文献
Random dynamics of polynomials and singular functions in the complex plane
复平面中多项式和奇异函数的随机动力学
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Mario Roy;Hiroki Sumi;Mariusz Urbanski;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi;H. Sumi;角 大輝;H. Sumi and M. Urbanski;H. Sumi and M. Urbanski;角大輝;H. Sumi;H. Sumi;H. Sumi;Hiroki Sumi;H. Sumi;角大輝;角大輝;H. Sumi - 通讯作者:
H. Sumi
有理半群、ランダムな複素力学系と複素平面上の特異関数
有理半群、随机复动力系统和复平面上的奇异函数
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Mario Roy;Hiroki Sumi;Mariusz Urbanski;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi;H. Sumi;角 大輝;H. Sumi and M. Urbanski;H. Sumi and M. Urbanski;角大輝;H. Sumi;H. Sumi;H. Sumi;Hiroki Sumi;H. Sumi;角大輝;角大輝;H. Sumi;角大輝;角大輝;H. Sumi;角大輝;角大輝 - 通讯作者:
角大輝
Random Julia sets that are Jordan curves but not quasicircles
随机 Julia 集是乔丹曲线但不是拟圆
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Mario Roy;Hiroki Sumi;Mariusz Urbanski;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi - 通讯作者:
H. Sumi
Random complex dynamics and singular functions on thecomplex plane
复平面上的随机复动力学和奇异函数
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Mario Roy;Hiroki Sumi;Mariusz Urbanski;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi;H. Sumi;角 大輝;H. Sumi and M. Urbanski;H. Sumi and M. Urbanski;角大輝;H. Sumi;H. Sumi;H. Sumi;Hiroki Sumi - 通讯作者:
Hiroki Sumi
Random complex dynamics and semigroups of holomorphic maps
随机复动力学和全纯映射半群
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Mario Roy;Hiroki Sumi;Mariusz Urbanski;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi;H. Sumi;角 大輝;H. Sumi and M. Urbanski;H. Sumi and M. Urbanski;角大輝;H. Sumi;H. Sumi;H. Sumi;Hiroki Sumi;H. Sumi;角大輝 - 通讯作者:
角大輝
Mariusz Urbanski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mariusz Urbanski', 18)}}的其他基金
Thermodynamic Formalism, Dynamics and Dimensions
热力学形式主义、动力学和尺寸
- 批准号:
1361677 - 财政年份:2014
- 资助金额:
$ 23.99万 - 项目类别:
Continuing Grant
Dynamical Systems II; Denton, TX, May 2009
动力系统二;
- 批准号:
0906538 - 财政年份:2009
- 资助金额:
$ 23.99万 - 项目类别:
Standard Grant
U.S.-Polish Collaborative Research: Ergodic Theory and Geometry of Transcendental Entire and Meromorphic Functions
美波合作研究:遍历理论和超越整体和亚纯函数的几何
- 批准号:
0306004 - 财政年份:2003
- 资助金额:
$ 23.99万 - 项目类别:
Standard Grant
相似海外基金
Challenge on data driven research foundation by merging formalism and AI
形式主义与人工智能融合对数据驱动研究基础的挑战
- 批准号:
23K17520 - 财政年份:2023
- 资助金额:
$ 23.99万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A stochastic formalism for tensor perturbations: gravitational waves induced by non-linear effects
张量扰动的随机形式主义:非线性效应引起的引力波
- 批准号:
23KF0247 - 财政年份:2023
- 资助金额:
$ 23.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Hamiltonian formalism in wave turbulence problems
波湍流问题中的哈密顿形式主义
- 批准号:
2307712 - 财政年份:2023
- 资助金额:
$ 23.99万 - 项目类别:
Standard Grant
Thermodynamic Formalism and Dimension of Overlapping Fractal Measures
热力学形式主义和重叠分形测度的维数
- 批准号:
2905612 - 财政年份:2022
- 资助金额:
$ 23.99万 - 项目类别:
Studentship
The best bureaucrat knows how to act. An ethnographic research on 'Chinese formalism' in bureaucratic institutions
最好的官僚知道如何行事。
- 批准号:
2754939 - 财政年份:2022
- 资助金额:
$ 23.99万 - 项目类别:
Studentship
Topics in Smooth Ergodic Theory: Stochastic Properties, Thermodynamic Formalism, Coexistence
平滑遍历理论主题:随机性质、热力学形式主义、共存
- 批准号:
2153053 - 财政年份:2022
- 资助金额:
$ 23.99万 - 项目类别:
Standard Grant
Many-Body Perturbation Formalism and Computational Prediction of Exciton Dynamics in Low-Dimensional Quantum Moiré Materials
低维量子莫尔材料中激子动力学的多体摄动形式主义和计算预测
- 批准号:
568202-2022 - 财政年份:2022
- 资助金额:
$ 23.99万 - 项目类别:
Postgraduate Scholarships - Doctoral
Aspects of the evolution dynamics of GR in the chiral formalism
手性形式主义中 GR 演化动力学的各个方面
- 批准号:
2601065 - 财政年份:2021
- 资助金额:
$ 23.99万 - 项目类别:
Studentship
Quantum circuit extraction from the Sum-over-Paths formalism
从路径求和形式中提取量子电路
- 批准号:
565041-2021 - 财政年份:2021
- 资助金额:
$ 23.99万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
ELEMENTS: Anharmonic formalism and codes to calculate thermal transport and phase change from first-principles calculations
元素:根据第一性原理计算计算热传输和相变的非谐形式和代码
- 批准号:
2103989 - 财政年份:2021
- 资助金额:
$ 23.99万 - 项目类别:
Standard Grant














{{item.name}}会员




