Thermodynamic Formalism, Dynamics and Dimensions

热力学形式主义、动力学和尺寸

基本信息

  • 批准号:
    1361677
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

This project will further develop an important subfield of mathematics called dynamical systems. This field originated at the end of nineteenth century and at the beginning of twentieth century with the work of great mathematicians such as Henri Poincare and Jacques Hadamard, to mention only two. Their research overlapped with physics, classical mechanics, and differential geometry; this current project is also multidisciplinary. It involves, in addition to dynamical systems, several other subfields of mathematics such as number theory and probability theory. In this project the PI will build on these fields and contribute to their development by laying down rigorous methods as applicable to those fields as to dynamical systems. The project is intended to involve at least eleven scholars from three continents as collaborators. Among them included are four scholars from the United States, one from Canada, five from Europe, and one from Japan. The results of the proposed research will also form a source for further research and provide material for teaching advanced graduated courses. The supported scholars will visit the PI's institution in Denton, Texas to conduct research, deliver seminar lectures, and interact with faculty and graduate students there.The principal investigator proposes, in seven separate but interrelated subprojects, to advance the theory of Diophantine approximations, transfer (Perron-Frobenius) operators, discrete groups, countable alphabet conformal iterated function systems, holomorphic dynamics, random dynamical systems, and ergodic averages. Diophantine approximations include geometrically extremal measures and badly approximable vectors in finite-dimensional Euclidean spaces. Transfer operators include Apollonian circle packings and dynamical systems with holes. Discrete groups include geometric rigidity for Kleinian groups and Gromov hyperbolic spaces. Conformal iterated function systems include harmonic measure, exact dimensionality, continuity of Hausdorff measure, and non--autonomous conformal iterated function systems. Holomorphic dynamics includes doubling measures and rational semigroups. Random dynamical systems include shrinking targets, dynamical rigidity in random conformal dynamical systems, random conformal iterated function systems with transversality, random rational functions, and random transcendental meromorphic functions. These subprojects will require methods from dynamical systems, ergodic theory, functional analysis, geometric measure theory, number theory, complex analysis, and probability theory. The goal of each subprojects of this proposal is to solve the major dynamical, geometric, and analytical problems related to these fields. It builds upon the methods and results the PI has obtained throughout his entire research career, focusing mainly on about 40 papers written in the past five years.
该项目将进一步发展数学的一个重要子领域,称为动力系统。这一领域起源于 19 世纪末和 20 世纪初,由亨利·庞加莱 (Henri Poincare) 和雅克·阿达玛 (Jacques Hadamard) 等伟大数学家(仅举两位)的工作成果。他们的研究与物理学、经典力学和微分几何重叠。目前的这个项目也是多学科的。除了动力系统之外,它还涉及数学的其他几个子领域,例如数论和概率论。在这个项目中,PI 将建立在这些领域的基础上,并通过制定适用于这些领域和动力系统的严格方法来促进它们的发展。该项目旨在让来自三大洲的至少十一位学者作为合作者。其中包括4名来自美国的学者、1名来自加拿大的学者、5名来自欧洲的学者、1名来自日本的学者。拟议研究的结果也将成为进一步研究的来源,并为高级研究生课程的教学提供材料。受资助的学者将访问位于德克萨斯州丹顿的 PI 机构,开展研究、举办研讨会讲座,并与那里的教师和研究生互动。首席研究员提出,在七个独立但相互关联的子项目中,推进丢番图逼近、传递(Perron-Frobenius)算子、离散群、可数字母表共形迭代函数系统、全纯理论 动力学、随机动力系统和遍历平均值。丢番图近似包括有限维欧几里德空间中的几何极值测度和不良近似向量。传递算子包括阿波罗圆填料和带孔动力系统。离散群包括克莱因群和格罗莫夫双曲空间的几何刚性。共形迭代函数系统包括调和测度、精确维数、豪斯多夫测度的连续性以及非自治共形迭代函数系统。全纯动力学包括加倍测度和有理半群。随机动力系统包括收缩目标、随机共形动力系统中的动力刚性、具有横向性的随机共形迭代函数系统、随机有理函数和随机超越亚纯函数。这些子项目将需要动力系统、遍历理论、泛函分析、几何测度论、数论、复分析和概率论的方法。该提案每个子项目的目标是解决与这些领域相关的主要动力学、几何和分析问题。它建立在 PI 在整个研究生涯中获得的方法和结果的基础上,主要关注过去五年中撰写的约 40 篇论文。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mariusz Urbanski其他文献

Random dynamics of polynomials and singular functions in the complex plane
复平面中多项式和奇异函数的随机动力学
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mario Roy;Hiroki Sumi;Mariusz Urbanski;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi;H. Sumi;角 大輝;H. Sumi and M. Urbanski;H. Sumi and M. Urbanski;角大輝;H. Sumi;H. Sumi;H. Sumi;Hiroki Sumi;H. Sumi;角大輝;角大輝;H. Sumi
  • 通讯作者:
    H. Sumi
有理半群、ランダムな複素力学系と複素平面上の特異関数
有理半群、随机复动力系统和复平面上的奇异函数
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mario Roy;Hiroki Sumi;Mariusz Urbanski;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi;H. Sumi;角 大輝;H. Sumi and M. Urbanski;H. Sumi and M. Urbanski;角大輝;H. Sumi;H. Sumi;H. Sumi;Hiroki Sumi;H. Sumi;角大輝;角大輝;H. Sumi;角大輝;角大輝;H. Sumi;角大輝;角大輝
  • 通讯作者:
    角大輝
Random Julia sets that are Jordan curves but not quasicircles
随机 Julia 集是乔丹曲线但不是拟圆
Random complex dynamics and singular functions on thecomplex plane
复平面上的随机复动力学和奇异函数
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mario Roy;Hiroki Sumi;Mariusz Urbanski;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi;H. Sumi;角 大輝;H. Sumi and M. Urbanski;H. Sumi and M. Urbanski;角大輝;H. Sumi;H. Sumi;H. Sumi;Hiroki Sumi
  • 通讯作者:
    Hiroki Sumi
Random complex dynamics and semigroups of holomorphic maps
随机复动力学和全纯映射半群
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mario Roy;Hiroki Sumi;Mariusz Urbanski;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi;H. Sumi;R. Stankewitz and H. Sumi;H. Sumi;H. Sumi;角 大輝;H. Sumi and M. Urbanski;H. Sumi and M. Urbanski;角大輝;H. Sumi;H. Sumi;H. Sumi;Hiroki Sumi;H. Sumi;角大輝
  • 通讯作者:
    角大輝

Mariusz Urbanski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mariusz Urbanski', 18)}}的其他基金

Thermodynamic Formalism, Dynamics and Dimensions
热力学形式主义、动力学和尺寸
  • 批准号:
    1001874
  • 财政年份:
    2010
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Dynamical Systems II; Denton, TX, May 2009
动力系统二;
  • 批准号:
    0906538
  • 财政年份:
    2009
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
U.S.-Polish Collaborative Research: Ergodic Theory and Geometry of Transcendental Entire and Meromorphic Functions
美波合作研究:遍历理论和超越整体和亚纯函数的几何
  • 批准号:
    0306004
  • 财政年份:
    2003
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Dynamical Systems, Denton 2003
动力系统,丹顿 2003
  • 批准号:
    0243806
  • 财政年份:
    2003
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似海外基金

Challenge on data driven research foundation by merging formalism and AI
形式主义与人工智能融合对数据驱动研究基础的挑战
  • 批准号:
    23K17520
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
A stochastic formalism for tensor perturbations: gravitational waves induced by non-linear effects
张量扰动的随机形式主义:非线性效应引起的引力波
  • 批准号:
    23KF0247
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Hamiltonian formalism in wave turbulence problems
波湍流问题中的哈密顿形式主义
  • 批准号:
    2307712
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
The best bureaucrat knows how to act. An ethnographic research on 'Chinese formalism' in bureaucratic institutions
最好的官僚知道如何行事。
  • 批准号:
    2754939
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Studentship
Thermodynamic Formalism and Dimension of Overlapping Fractal Measures
热力学形式主义和重叠分形测度的维数
  • 批准号:
    2905612
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Studentship
Topics in Smooth Ergodic Theory: Stochastic Properties, Thermodynamic Formalism, Coexistence
平滑遍历理论主题:随机性质、热力学形式主义、共存
  • 批准号:
    2153053
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Many-Body Perturbation Formalism and Computational Prediction of Exciton Dynamics in Low-Dimensional Quantum Moiré Materials
低维量子莫尔材料中激子动力学的多体摄动形式主义和计算预测
  • 批准号:
    568202-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Aspects of the evolution dynamics of GR in the chiral formalism
手性形式主义中 GR 演化动力学的各个方面
  • 批准号:
    2601065
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Studentship
Quantum circuit extraction from the Sum-over-Paths formalism
从路径求和形式中提取量子电路
  • 批准号:
    565041-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
ELEMENTS: Anharmonic formalism and codes to calculate thermal transport and phase change from first-principles calculations
元素:根据第一性原理计算计算热传输和相变的非谐形式和代码
  • 批准号:
    2103989
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了